
Infopark CMS Fiona

Search Server

Infopark CMS Fiona

Search Server

While every precaution has been taken in the preparation of all our technical documents, we make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein. All trademarks
and copyrights referred to in this document are the property of their respective owners. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without our prior consent.

Search Server – © 2011 Infopark AG 3/73

Contents

1 Introductory Comments . 8

2 Concepts of Infopark Search Cartridge . 9

2.1 Operation Basics . 9

2.1.1 Editorial System . 9

2.1.2 Live System . 9

2.2 Architecture . 10

2.3 Content Indexing . 10

2.3.1 Collections . 10

2.3.2 Indexed Data . 11

2.3.3 Document Zones and Fields . 11

2.3.4 Pre-Processing During Indexing . 12

2.3.5 Identification of Indexed Contents . 12

2.4 Content Search . 12

2.4.1 Multiple Parsers . 14

2.4.2 Pre-Processing and Post-Processing . 15

2.4.3 Character Sets . 15

3 Configuration and Administration . 16

3.1 Executing the Search Engine Server . 16

3.2 Configuring Searching and Indexing . 16

3.3 Integrating an External Preprocessor . 17

3.3.1 General Notes . 17

3.3.2 Functionality . 17

3.3.3 Configuration . 18

3.4 Configuring Collections . 19

3.4.1 Defining Document Zones . 20

3.4.2 Defining Document Fields . 21

3.5 Defining Stopwords . 22

3.6 Defining Synonyms . 23

3.7 Treating Hyphens as Whitespace . 24

3.8 The Tcl Interface . 24

3.8.1 Administration Commands . 24

3.8.2 aboutCollection . 25

3.8.3 backupCollection . 26

Search Server – © 2011 Infopark AG 4/73

3.8.4 createCollection . 26

3.8.5 deleteCollection . 27

3.8.6 listCollections . 27

3.8.7 purgeCollection . 28

3.8.8 repairCollection . 28

3.8.9 Other Commands . 29

4 The Syntax of the Search Queries . 31

4.1 Search Queries . 31

4.1.1 Parser . 31

4.1.2 Simple Parser . 32

4.1.3 Explicit Parser . 32

4.1.4 Freetext Parser . 33

4.2 Non-English Environments . 33

4.2.1 Using the English-Language Query Language . 33

4.2.2 Tokenization . 34

5 Operators and Modifiers . 35

5.1 Operator Types . 35

5.1.1 Concept Operators . 35

5.1.2 Evidence Operators . 36

5.1.3 Proximity Operators . 36

5.1.4 Operators for Analyzing Written Language . 37

5.1.5 Scoring Operators . 37

5.1.6 Field Operators and Relational Operators . 38

5.2 Operator Reference . 39

5.2.1 ACCRUE . 39

5.2.2 ALL . 39

5.2.3 AND . 40

5.2.4 ANY . 40

5.2.5 IN . 40

5.2.6 NEAR . 41

5.2.7 NEAR/N . 41

5.2.8 OR . 42

5.2.9 PARAGRAPH . 42

5.2.10 PHRASE . 42

Search Server – © 2011 Infopark AG 5/73

5.2.11 SENTENCE . 43

5.2.12 SOUNDEX . 43

5.2.13 STEM . 43

5.2.14 THESAURUS . 44

5.2.15 TOPIC . 44

5.2.16 TYPO/N . 44

5.2.17 WILDCARD . 45

5.2.18 WORD . 47

5.3 Overview of Special Operators . 47

5.3.1 COMPLEMENT . 47

5.3.2 CONTAINS . 48

5.3.3 ENDS . 49

5.3.4 = (equal) . 49

5.3.5 FREETEXT . 49

5.3.6 > (greater than) . 50

5.3.7 >= (greater than or equal) . 50

5.3.8 < (less than) . 50

5.3.9 <= (less than or equal) . 50

5.3.10 LIKE . 51

5.3.11 MATCHES . 53

5.3.12 != (not equal) . 54

5.3.13 PRODUCT . 54

5.3.14 STARTS . 54

5.3.15 SUBSTRING . 54

5.3.16 SUM . 55

5.3.17 YESNO . 55

5.4 Modifier Reference . 55

5.4.1 CASE . 56

5.4.2 MANY . 57

5.4.3 NOT . 57

5.4.4 ORDER . 57

5.5 Ranking the Search Results . 58

6 MISE, the Search Engine Server’s XML Protocol . 60

6.1 Payloads . 60

Search Server – © 2011 Infopark AG 6/73

6.1.1 Header Element . 60

6.1.2 Request Element . 62

6.1.3 Response Element . 62

6.2 Indexing Requests . 63

6.2.1 Request . 63

6.2.2 Streaming . 65

6.2.3 Response . 65

6.3 Search Requests . 65

6.3.1 Request . 65

6.3.2 Response . 68

6.4 Document Deletion Requests . 68

6.4.1 Request . 68

6.4.2 Response . 69

6.5 Collection Deletion Requests . 69

6.5.1 Request . 69

6.5.2 Response . 70

6.6 Error Handling . 70

6.6.1 Payload Errors . 70

6.6.2 Request Errors . 71

7 MISE as DTD . 72

7.1 Request . 72

7.2 Response (ses-search) . 73

Search Server – © 2011 Infopark AG 7/73

Introductory Comments

Search Server – © 2011 Infopark AG 8/73

1
1 Introductory Comments

This manual has been written for system administrators and developers who would like to provide

their CMS with many and diverse search functions. The cartridge is an optional CMS component that

has to be licensed separately. It can be used in the editorial system as well as on the live server.

Readers of this manual should be familiar with the installation and configuration procedures of

Infopark CMS Fiona and have knowledge of search engine concepts. Integrating the Search Cartridge

into a web presence also requires knowledge of objects, templates, the export procedure, and

scripting.

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 9/73

2
2 Concepts of Infopark Search Cartridge

2.1 Operation Basics

Infopark Search Cartridge consists of a server application (Search Engine Server, SES) and Autonomy's

search engine that add advanced search features to Infopark CMS Fiona. It can be used in the editiorial

system as well as on the live server in order to give both editors and users of your website the

opportunity to search content according to their own criteria.

Due to its architecture, the Search Cartridge can be used very flexibly and may be adjusted to the

individual customer’s needs. It has interfaces, for example, that make it possible to pre-process the

content to be indexed or to post-process the search results (see Architecture).

Just like the Content Manager and the Template Engine, the Search Engine Server has an XML

interface that makes its functions available to the clients. Not only the Content Manager and the

Template Engine may act as clients, but also scripts that communicate with the SES using the XML

interface.

On the live server, the SES can be used with or without the Template Engine.

2.1.1 Editorial System

In the editorial system, the Search Engine Server receives the data to be indexed from the Content

Management Server. The SES optionally processes the data and sends it to the search engine. While

users are working with CMS files and contents, the Content Manager makes sure that the indexed data

of the Search Cartridge is kept up to date. The users normally do not notice that their creation and

deletion operations cause the indexes of the Search Cartridge to be updated in the background.

Content updates and search requests made by the users of the Content Manager are communicated

to the Search Cartridge by means of XML documents. These documents are structured according to

an XML DTD (Document Type Definition). The protocol is called Method of Interacting with Search

Engines (MISE, see MISE as DTD)

The XML documents are transferred using HTTP requests. The Content Manager acts as a Search Engine

Server client, i. e. It sends update or search requests to the Cartridge that are executed and answered

by the Cartridge.

2.1.2 Live System

On the live system, update and search requests are not initiated by the same client (like in the

editorial system). When content has been updated, the Template engine is responsible for sending a

corresponding request to the Search Cartridge. In the case of a search request, it is the task of a special

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 10/73

application on the live server (a PHP script, for example) to send an appropriate request to the Search

Engine Server and to output the search results as an HTML page.

You can use scripts in order to directly communicate with the Search Engine Server from within

documents. A Script may be used for generating an XML document from the search query entered

in a form and for sending it to the Search Cartridge. The script then receives the search results from

the Search Cartridge and uses them to generate the result pages that are to be delivered. Scripts and

search forms can be easily maintained as CMS files using the Content Manager.

The Search Cartridge can also be used on live systems based on Ruby on Rails and the Rails Connector

for Infopark CMS Fiona.

2.2 Architecture

Infopark Search Cartridge consists of the Search Engine Server and a search module by Autonomy

(formerly known as Verity).

The Search Engine Server has the same architecture as other CMS applications. It is always run as a

master server. The master creates slaves to which it passes the individual requests as HTTP connections.

Subsequently, the slaves communicate on their own with the HTTP clients that have initiated the

requests. The master server acts as a supervisor. It makes sure that there are always enough slaves

available to which it can dispatch incoming connections. The limits, i. e. the minimum and maximum

numbers of running slaves, for example, are set via configuration values.

Just as the Content Manager and the Template Engine, the Search Engine Server has a Tcl interface

for maintenance purposes such as creating and managing collections (used for storing indexes).

Furthermore, the search functions of the Search Engine Server can be extended using Tcl scripts. It is

possible, for example, to pre-process search requests or to post-process search results.

Clients such as the Content Manager or a search script pass search and indexing tasks to the Search

Engine Server via its XML interface. The XML interface and the DTD of the documents passed to

the server via this interface make the functions of the Search Cartridge available to the clients and

standardize their access to it.

2.3 Content Indexing

2.3.1 Collections

The Search Cartridge indexes documents into so-called collections. Being able to index a particular

document into a particular collection can be used to accelerate the search later on. On websites in two

or more languages, for example, only the content for a particular language needs to searched if the

language is a search criterion. However, it is also possible to search several or all collections.

As Infopark CMS Fiona is installed, two collections are created, one for the editorial and one for the

live side. Further collections can be created using a Tcl command of the Search Server. When doing

this, a pre-set configuration is used for the new collection. It includes – among other things – country-

specific settings such as the character set of the indexed documents and the names of the document

fields whose contents are to be returned in search results. The structure of a collection cannot be

changed once it has been created.

If the Template Engine is used on the live server, a collection pair is used for indexing and searching.

While search requests are served from the collection that is currently online, updated content is

indexed into the offline collection. Such a collection pair is called a switchable collection.

http://www.infopark.com/1768163/12-Rails-Connector
http://www.infopark.com/1768163/12-Rails-Connector

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 11/73

If the Template Engine is not available on the live server, the live server collections can be created

by the Content Manager. Documents that are exported using the exportSubtree command are

automatically indexed if this option has been enabled in the system configuration.

2.3.2 Indexed Data

In the editorial system, the Search Cartridge indexes the versions of files as well as some important file

fields. You can configure the kinds of versions to be indexed – edited, released and archived versions

may be combined as desired.

On the live server, the Template Engine indexes the exported, UTF-8 encoded documents including all

their meta-data before applying the configured export encoding to them. If a file has been exported

using data from other files (like frame sets, layouts for the main content), only the meta-data of the

main file are indexed.

Frame sets and their frames are jointly indexed as a single document. Therefore, the frame set is

included in the search results, if an associated frame matches the search query. If the Template Engine

is not available on the live system, the Content Manager can create the indexes during the static

export.

Since the Search Cartridge not only indexes the version fields but also the most important file fields,

even searching for fields such as the file name or file format may produce search results.

In the values of fields containing HTML text (such as body), the SGML comments <!-- noindex --

> and <!-- /noindex --> have the effect that the text between these comments is not indexed.

Comments themselves are never indexed.

Each time a value of an indexed file or version field is altered or the file status changes due to

workflow actions such as Release or Unrelease, the Content Manager indexes the respective version for

the search in the editorial system. For the search on the live system, either the Template Engine or the

Content Manager carry out the indexing of the web documents during the export.

2.3.3 Document Zones and Fields

The Search Engine Server gets the data of a version or web document to be indexed as an XML

document in a request. Each attribute in such a document corresponds to an XML element. The custom

version field abstract, for example, is stored in the XML file as follows:

<abstract>Summary of the document</abstract>

After the Search Engine Server has passed the document that is to be indexed to the search module

and the latter has indexed it, all the indexed fields of the CMS file have become so called zones. Zones

are named document areas that can be searched.

You can explicitely restrict search queries to one or more zones in order to search for documents that

contain the search term in these zones. Such a search is called attributed, because it is not applied

to the whole document but only to selected areas. If a search request is not explicitely restricted to

particular zones, all zones are searched.

While document zones enable you to search through specific document parts, document fields are

used for enriching the search result of each found document with the information you want to display

on the results pages. In the standard configuration, for example, the version field title not only

becomes a zone, but in addition to this, its content is stored in the document field title. This enables

http://www.infopark.com/1214228/04-indexing

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 12/73

the Search Cartridge to include the titles of the documents in the search results, for clients to use them

as intended.

Document zones and fields can be configured as desired (see Configuring Collections). A version of

a CMS file can have any number of version fields. During indexing the fields are transformed into

the same number of document zones, provided that the configuration does not exclude zones from

indexing or restricts indexing to certain zones.

In contrast to this, all indexed documents always have all document fields. If the configuration defines,

for example, that the content of a zone is to be stored in a particular field, this field is always included

in the indexed document, even if the respective zone is not present in the document. In this case, the

field remains empty.

A client that sends a search request to the Search Engine Server can explicitely name the fields whose

content it wants to be included in the search result (see Search Requests). The zones and fields

available in the standard configuration can be found in section Content Search.

2.3.4 Pre-Processing During Indexing

As the Search Engine Server indexes documents, you can have every document preprocessed by a script

or a program. A pre-processor can be used, for example, to add information not included in the CMS

file versions themselves to the documents to be indexed. Pre-processing can also be helpful if you need

to alter the encoding of the documents, i. e. to change it to the required format (UTF-8).

The Search Engine Server passes the documents to be indexed to the pre-processor without prior

modification, i.e. the script or program receives the original indexing request. The pre-processor

modifies the data as required and returns it to the Search Engine Server that sends it to the Autonomy

search module for indexing.

2.3.5 Identification of Indexed Contents

In the process of indexing, the search module assigns each document a unique identifier, the

document ID. This ID is stored as a field in the search index and is returned in the search results. The

search module receives the identifiers from the Search Engine Server which in turn has received them

from the respective client. Thus, the client decides which CMS file or version field should be used as the

document IDs.

While the Content Management Server uses version IDs as document identifiers, the Template Engine

uses file IDs. Thus, in the editorial system, the ID of an indexed document corresponds to a version ID,

whereas in the live system, the document ID is a file ID.

The document ID enables the client (e.g. the user interface of the editorial system, and the Template

Engine) to retrieve additional information about the document. Next to this ID, other important items

are also indexed as document fields by default, the individual CMS file paths, and the titles of the

relevant CMS file versions, for example. Thus, a client can extract the file paths from the search results

to create result pages on which the titles of the retrieved documents are linked to the corresponding

web pages.

2.4 Content Search

In the editorial system, the Search Engine Server indexes the versions of CMS files. On the live system, it

indexes the exported web documents. In addition to this, in both systems the most important file fields

are indexed.

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 13/73

The search results returned by the Search Engine Server are composed of data records. The server

returns one record for each document that matches the search query. Each record consists of a set of

document fields whose contents have been set during indexing (see Content Indexing). The document

fields can be configured as required (see Configuring Collections).

In addition to important version and file fields, the rank of a matching document is available as a

document field (score) in the standard configuration. The rank of a document specifies the relevance

of the latter in relation to the corresponding search query. The relevance is given as a number

between 0 and 100.

For both the editorial and the live system, the following table lists the document fields returned by the

server for each document that matches a search query:

Document Field Editorial System Live System

collection • •

score • •

docId (from version/file ID) • •

lastChanged • •

objId (from file ID) •

title • •

visiblePath • •

The Autonomy search module assigns the contents of the lastChanged and title zones to the

document fields with the respective names. The version and file fields listed below are indexed as

zones:

Indexed File Fields Editorial System Live System

name • •

objClass • •

objType • •

suppressExport •

visiblePath • •

workFlowName •

File Permissions •

Indexed Version Fields Editorial System Live System

blobLength

(from version 6.5)
• •

exportBlob

(exported object, not for images)
• •

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 14/73

contentType • •

lastChanged • •

mimeType • •

state •

title • •

validFrom • •

validUntil • •

custom fields
(excluding signature and linklist fields)

• •

The visiblePath zone and field are empty in the editorial system. On the live system, they contain

the path to the document.

For custom version fields of the multi-selection (multienum) type, each field value is indexed as a zone

with the name of the version field. If such a field has several values, for each value a zone with the

same name is indexed.

The same applies to file permissions: Each user group with a certain permission is indexed as a

zone with the name of that file permission. An exception to this is the live server read permission

(permissionLiveServerRead). The corresponding zone contains the names of all groups that

have been given this permission. For documents that are not subject to access restrictions, the zone

noPermissionLiveServerRead is indexed with the content free.

In search requests, you can execute a targeted search for documents containing the search term in one

or more zones using the operator IN.

2.4.1 Multiple Parsers

The Infopark Search Cartridge supports search queries in several formats. For each format, a so-called

parser is responsible. A parser analyzes input – in this case, search queries – and converts them into a

general internal format in order to perform the actions corresponding to the input.

Search queries can be made either as free text, in explicit syntax, or in simple syntax. The default

configuration uses the parser for queries in simple syntax.

The free text parser can be used for making search queries in written language, i. e. without

using operators (e. g. „peace negotiations in the Middle East"). The Infopark Search Cartridge

internally converts free text queries into search queries by removing unimportant words like articles,

conjunctions, or prepositions (so-called stop words) and by taking into account the specifics of

natural language such as noun phrases and word order. (See also the information about the operator

FREETEXT).

In contrast to this, for queries in explicit or simple syntax, the search engine takes into account the

operators with which search terms may be combined. For further information regarding the simple

and explicit syntax as well as operators, please refer to the sections The Syntax of the Search Queries

and Operators and Modifiers.

Concepts of Infopark Search Cartridge

Search Server – © 2011 Infopark AG 15/73

2.4.2 Pre-Processing and Post-Processing

The Search Engine Server allows each search request it receives from a client (including the Content

Manager or the Template Engine) to be processed by a pre-processor before the request is passed to

the search module. With such a pre-processor, terms or operations can be added to search queries, or

disallowed search terms can be removed from the queries, for example. Because the search request

the pre-processor receives is the XML document originally sent to the Search Engine Server, the pre-

processor must be able to process XML documents.

The post-processing of search results works analogously to the pre-processing. Once the Search Engine

Server has passed a (if applicable, pre-processed) search request to the search module, the module

returns a search result. This result can be processed by a post-processor, in order to, for example,

extend or shorten the list of the found documents or to attach to each hit an additional document

field whose respective value has been calculated by the the post-processor.

2.4.3 Character Sets

The Search Cartridge uses the character encoding UTF-8. In order to be able to return search results (i.

 e. primarily the contents of document fields) encoded in UTF-8, the indexed documents must have this

character set, too. This is ensured by the Content Manager and the Template Engine, respectively.

Configuration and Administration

Search Server – © 2011 Infopark AG 16/73

3
3 Configuration and Administration

3.1 Executing the Search Engine Server

The Search Engine Server is installed together with Infopark CMS Fiona. It is therefore shown only

briefly here how the Search Engine Server is started.

Under Linux and Solaris, the Search Engine Server can be executed as follows by the user under whose

login the CMS was installed:

~/instance/default/bin/rc.npsd start ses

If you would like to start the Search Engine Server of a different instance, replace default with the

respective directory name. Instead of start, you can alternatively use the parameters stop, restart,

or status as arguments to the start script rc.npsd in order to stop the server, make a restart or have

it return its status.

The instance directory is located below the CMS installation directory.

Please note that under Windows, you need to be logged-in as an administrator in order to start the

Search Engine Server. You can execute it by means of the Windows start menu.

Please note that the Search Engine Server, the Content Management Server, and the Template Engine

need to be adjusted to each other in order to be able to communicate with each other within a Fiona

installation. Adjustments are also necessary with respect to the collections to be used, if you want to

use more or other collections than are pre-configured.

3.2 Configuring Searching and Indexing

The Search Engine Server itself as well as its search and indexing behavior can be configured by means

of the following system configuration entries.

• server.ses

• indexing

• searching

• tuning

The corresponding configuration files can be found in the config directory below the instance

directory concerned, i.e., for example, in instance/default/config.

http://www.infopark.com/1215241/17-Installation
http://www.infopark.com/1213988/45-TE-Integration
http://www.infopark.com/1214264/07-server
http://www.infopark.com/1214264/07-server
http://www.infopark.com/1214228/04-indexing
http://www.infopark.com/1214252/06-searching
http://www.infopark.com/1214279/08-tuning

Configuration and Administration

Search Server – © 2011 Infopark AG 17/73

As with all CMS applications, the Search Engine Server reads its configuration only at start-up. It

therefore needs to be restarted after changes have been made to the configuration.

3.3 Integrating an External Preprocessor

3.3.1 General Notes

By means of an external preprocessor, documents can be modified before they are indexed. This

makes it possible to convert binary data to text, or to generate or extract meta data (from images, for

example) for the purpose of indexing. As a result, searches will (better) find the documents concerned.

You can define as many preprocessors as you require.

Documents of any MIME type can be associated with a preprocessor. This can be done by means of

the indexing section in the system configuration. Any suitable program can be used as an external

preprocessor. Optionally, arguments can be passed to such a program.

3.3.2 Functionality

The preprocessor program receives the document to be indexed via stdin from the Search Server.

The document passed to the preprocessor is a serialized XML document. The preprocessor modifies it

in the desired way and returns it to the Search Server via stdout. The Search Server then indexes the

modified document. An example:

Original data:

<ses-indexDoc docId="2148" collection="cm-contents"

 mimeType="application/vnd.ms-excel">

<title encoding="plain">Ein Beispiel mit Excel-Daten</title>

<keyword encoding="plain">Beispiel</keyword>

<blob encoding="stream" mimeType="application/vnd.ms-excel">

 /Fiona_671/instance/default/tmp/externalPreprocessor/1.dat

</blob>

</ses-indexDoc>

Modified data:

<ses-indexDoc docId="2148" collection="cm-contents"

 mimeType="application/vnd.ms-excel">

<title encoding="plain">Excel-Daten als Text</title>

<keyword encoding="plain">Beispiel</keyword>

<blob encoding="stream" mimeType="text/plain">

 /Fiona_671/instance/default/tmp/text_data.dat

</blob>

</ses-indexDoc>

The XML document contains the fields to be indexed (the names of the XML elements) as well as

their values (the content of the XML elements). A field value may either be contained directly in the

element's content (encoding: plain) or it may have been encoded. The encoding can be determined

by means of the encoding tag attribute of the field element. Its value can be one of:

• plain: The field value is the content of the XML element.

• base64: The field value can be determined by base64-decoding the content of the XML element.

• stream: The field value is contained in the file whose path is specified in the content of the XML

element.

http://www.infopark.com/1214228/04-indexing

Configuration and Administration

Search Server – © 2011 Infopark AG 18/73

From version 6.7.1, for all encodings except plain the MIME type of the document is provided as

the value of the mimeType tag attribute of the field element. If the MIME type is changed during

preprocessing, the mimeType attribute must be set to the MIME type of the resulting field value. If the

encoding is not plain, a field value will only be indexed if its MIME type matches text/*. In other

words: if a preprocessor produces base64-encoded or streamed field values, it must set their MIME type

to a text type.

Up to version 6.7.0, the preprocessed field values are required to be plain, i.e. not encoded. Encoded

field values will not be indexed.

3.3.3 Configuration

The preprocessor to be used, the MIME types to which it is applied, and the arguments to be passed to

it can be specified in the indexing.xml configuration file. The corresponding section might look like

this, for example:

 ...

 <contentPreprocessors type="list">

 <preprocessor>

 <mimeTypes type="list">

 <mimeType>application/pdf</mimeType>

 </mimeTypes>

 <processor type="external">

 bin/tclsh

 </processor>

 <processorArguments type="list">

 /Fiona_671/instance/default/script/custom/pdf2TxtWrapper.tcl

 </processorArguments>

 </preprocessor>

 ...

 </contentPreprocessors>

 ...

Here, the Tcl interpreter was specified as the preprocessor program to use. To this program the name

of the script to be executed is passed as an argument in the processorArguments element. Since

the script cannot be loaded during server startup, it should not be placed into the serverCmds or

clientCmds directory.

The following sample script, pdf2TxtWrapper.tcl, demonstrates how a PDF document, which is

containd as the blob field in the XML document, can be read and converted to text. Please note that

no preprocessor is required for the Search Server to index PDF documents.

Libraries

package require dom

package require base64

proc safeInterp {args} {}

source [file join [file dirname [info script]]\

 ../../../share/script/common/clientCmds/util.tcl]

Read Data

set xmlRequest [read stdin]

Parse XML

set docNode [::dom::DOMImplementation parse $xmlRequest]

set rootNode [::dom::document cget $docNode -documentElement]

Select and handle element "blob"

set blobElement [lindex [::dom::selectNode $rootNode descendant::blob] 0]

array set attributes [array get [$blobElement cget -attributes]]

set blobTextNode [$blobElement cget -firstChild]

if {$blobTextNode ne ""} {

Configuration and Administration

Search Server – © 2011 Infopark AG 19/73

 set value [$blobTextNode cget -nodeValue]

 if {$value ne ""} {

 switch $attributes(encoding) {

 plain {

 # shouldn't happen with pdf

 set blob $value

 }

 base64 {

 set blob [::base64::decode $value]

 }

 stream {

 set blobFile $value

 }

 }

 set deletePdfFile 0

 if {![info exists blobFile]} {

 set blobFile "/tmp/convert_me_[pid].pdf"

 writeFile $blobFile $blob

 set deletePdfFile 1

 }

 set textFile "/tmp/converted_[pid].txt"

 # convert using ps2ascii

 if {![catch {

 exec ps2ascii $blobFile $textFile

 }]} {

 # modify the dom tree

 $blobTextNode configure -nodeValue $textFile

 ::dom::element setAttribute $blobElement mimeType "text/plain"

 ::dom::element setAttribute $blobElement encoding stream

 }

 if {$deletePdfFile} {

 file delete -force $blobFile

 }

 }

}

set xmlToReturn [string trimright [::dom::DOMImplementation serialize $docNode] "\n"]

set lines [split $xmlToReturn "\n"]

if {[string match "<!D*" [lindex $lines 1]]} {

 set xmlToReturn [join [lreplace $lines 1 1] "\n"]

}

return the (modified) xml data

puts -nonewline $xmlToReturn

3.4 Configuring Collections

New collections are created on the basis of configuration files. These files mainly determine the

document zones to be indexed and the document fields to set in this process. Only those elements of

the indexed documents that are treated as document zones can be transferred to document fields (see

also Document Zones and Fields).

These properties of collections are controlled by so-called style files. When a collection is created

(Administration Commands), the supplied style files located in the config/vdk/style directory are

copied to the style directory below the collection directory. They are meant to be used as templates.

If you would like to change the basic properties of all future collections, you can change the zone

and field definitions in the style templates. If, on the other hand, you would like to modify the

configuration of a newly created collection, then you can edit the style files of this individual

collection. The configuration of a collection to which documents have already been added should not

be changed, unless it is purged with purgeCollection before. Changes to the configuration files of

a collection must not be made during an indexing process. The Search Engine Server must be stopped

first.

Configuration and Administration

Search Server – © 2011 Infopark AG 20/73

After having created a new collection, you should adapt the rules used to determine the collection into

which CMS files are indexed (a CMS file can only be indexed into one collection). This can be done by

means of the indexing.incrementalExport.collectionSelection system configuration entry.

The search, however, always includes all collections unless the list of the collections to use is explicitly

specified in the search request.

3.4.1 Defining Document Zones

Document zones can be defined in the file style.xml. Inside this file, the following elements are

available as instructions for defining how XML tags (i. e. attributes in contents) are to be handled:

The following command ignores all XML tags in the document, indexing only the content of the XML

elements:

<ignore xmltag = "*"/>

The following instruction skips indexing the specified xmltag but indexes the content between its

start and end tags of the specified xmltag :

<ignore xmltag = "section_1"/>

The following instruction indexes the XML element identified by xmltag as a zone if there is also an

ignore xmltag="*" instruction:

<preserve xmltag = "section_1"/>

The following instruction suppresses the entire element identified by xmltag. The tag, attributes, and

content are not indexed:

<suppress xmltag = "section_1"/>

The following instruction indexes the content between the start and end tags of the specified xmltag

as a field which is given the fieldname identified by fieldname. If fieldname is not specified, the

tag name is used as field name. Any existing value of the field is overridden if the optional attribute

index="override" has been specified.

<field xmltag="column_2" fieldname="vdk_field_2" index="override"/>

The elements to be indexed as zones can be defined inclusively or exclusively. When defined

exclusively, all elements are indexed except the ones whose name has been specified using <ignore

xmltag="..."/>. To define zones inclusively, <ignore xmltag="*"/> is used to exclude all

elements first. Then the elements to be indexed are included explicitly by using <preserve

xmltag="..."/> for each of them.

With both methods, inclusive and exclusive, the contents of the elements (i. e. the zones) can be stored

in fields. This makes it possible to return these values in the search result for each selected document. It

is not possible to ignore an element and to store its content in a document field at the same time.

http://www.infopark.com/1214228/04-indexing

Configuration and Administration

Search Server – © 2011 Infopark AG 21/73

3.4.2 Defining Document Fields

With document fields the Verity module makes a distinction between standard and user-defined fields.

Standard fields are configured in the style.sfl file, user-defined ones in style.ufl . If you wish to define

fields in order to provide for additional information concerning your documents in the search result,

please take notice of the following:

• Each field increases the amount of memory needed in proportion to the number of indexed

documents.

• Field values are set during the indexing process and can be included in the search result during a

search.The more fields you have defined or are included in the search result the longer this process

will take.

The names of the standard document fields are defaults of the Verity module which you should not

change to keep your collections compatible with third party collections. However, you can define alias

names for document fields instead, if required.

The format of the style.sfl and style.ufl files is identical. The Verity module reads them in via the

style.ddd file. Fields in these files can be defined in accordance with the following example:

data-table: nps{

 varwidth: objId dda

 /minmax = yes

 /alias = objectId

 autoval: collection DBNAME}

The keyword data-table serves to define the name of a table in a data segment for the Verity

module. In the example above, the name is nps.

With each field a storage type is associated which determines the source of the field value and how it

is stored. The following storage types exist:

Storage type Meaning and usage

autoval Assigns an internal value of the Verity module to the field.
Syntax: autoval: FieldName DBNAME|DBPATH
FieldName: Name of the field.
DBNAME: Collection name.
DBPATH: Path of the collection.

constant Assigns a constant value to the field.
Syntax: constant: FieldName DataType Value
FieldName: Name of the field.
DataType: One of the data types listed below.
Value: The field value. Must be enclosed in quotes if it contains space characters.

worm Assigns a value from a document zone to a field. The value cannot be changed
afterwards (write once, read many times).
Syntax: worm: FieldName DataType
FieldName: Name of the field.
DataType: One of the data types listed below.

fixwidth Assigns a value from a document zone to a field. The value has a fixed length
and will be truncated if necessary.
Syntax: fixwidth: FieldName Length DataType
FieldName: Name of the field.

Configuration and Administration

Search Server – © 2011 Infopark AG 22/73

Length: The maximum length of the field value in characters.
DataType: One of the data types listed below.
Modifier: /minmax = yes|no: Speeds up searches in the values of this field,
especially with larger collections and if the field values lie within a particular
range.

varwidth Assigns a value from a document zone with any length to a field.
Syntax: varwidth: FieldName StorageLocation
FieldName: Name of the field.
StorageLocation: A three-character string which must not start with _ or di.
Modifier: /minmax = yes|no: see fixwidth.

Field names can consist of up to 128 alphanumeric characters and must not begin with an underscore

character. As storage location for the varwidth storage type, specify dda, for example.

Every document field can have one of the following data types:

Data type Meaning

text The field contains ASCII characters.

date An internal date format used to store date and time values in the range from
1904 to 2037. This data type is not compatible with the date and time format of
the Search Cartridge.

signed-integer A signed integer number whose range depends on the size of the field.
1 Byte: -128 to 127
2 Bytes: -32768 to 32767
4 Bytes: -2e31 to 2e31 -1

unsigned-

integer

An unsigned integer number whose range depends on the size of the field.
1 Byte: 0 to 255
2 Bytes: 0 to 65535
4 Bytes: 0 to 2e32 -1

Document fields that have been created using the minmax option allow for storing up to 256 bytes

in them. If the size of the value to be stored is greater, then only the first 256 Bytes are stored in the

field. By means of the alias option an alternate name can be specified under which the field can be

addressed in search queries.

3.5 Defining Stopwords

Stopwords are words that can be found very often in texts (articles, prepositions, etc.) and therefore

lead to a large number of irrelevant search results when searching for them.

With search queries in whose search text stopwords occur – however not exclusively – the hits relating

only to one or more stopwords can be suppressed. To do this, proceed as follows:

1. Enter the desired stopwords into the the file installation_dir/3rdparty/vdk/common/
uni/vdk30.stp. Place each stopword onto an individual line. (As a template you might use the
stopwords in the files installation_dir/3rdparty/vdk/common/uni/stopword.xx.)

2. Restart the SES.

Configuration and Administration

Search Server – © 2011 Infopark AG 23/73

The defined stopwords will now be observed in search queries using the FREETEXT operator. Example:

If "the" has been defined as a stopword, the search query

<#FREETEXT> "the Teddy"

will find only documents containing the word "Teddy".

If a FREETEXT search query exclusively contains stopwords, they will not be ignored.

3.6 Defining Synonyms

By means of the thesaurus function of the Autonomy search engine, synonyms can be defined. This

makes it possible to get hits even if only a term with a similar meaning (a synonym) instead of the

search term itself can be found in the content.

A thesaurus can be defined and installed in the following way:

1. Define the thesaurus as a text file, vdk30.txt. Example:

$control:1

synonyms:

{

list: "publication,magazine,newspaper,journal"

list: "law,statute,bill"

}

$$

The definition consists of synonym lists, each of them occupying an individual line.

2. Compile the thesaurus using mksyd. If you are using the uni locale, the following steps are

required under Linux:

> export PATH=$PATH:installation_dir/3rdparty/vdk/_ilnx21/bin

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:installation_dir/3rdparty/vdk/_ilnx21/bin

> mksyd -locale uni -f vdk30.txt -syd vdk30.syd

Unter Windows you can extend the search path using

set PATH=%PATH%;installation_dir\3rdparty\vdk_ilnx21\bin

Then execute the command given above.

3. To install the thesaurus, please copy it to the location where the search engine expects it to be:

> cp vdk30.syd Installationsverzeichnis/3rdparty/vdk/common/uni

Under Windows, please use copy instead of cp and replace the slashes with backslashes.

4. Restart the SES:

> installation_dir/instance/instance_name/bin/rc.npsd restart SES

Configuration and Administration

Search Server – © 2011 Infopark AG 24/73

The defined synonyms can now be used in search queries made with the THESAURUS operator.

Example: the search query

<#MANY><#THESAURUS>"publication"

will find all documents containing the word "publication" or one of its synonyms.

3.7 Treating Hyphens as Whitespace

With the uni locale selected, the search engine treats hyphens contained in the content as normal

alphabetic characters by default. If a document contains the phrase six-year-old sister, for

example, searching for year* will not retrieve this document.

To change this behavior, the hyphen needs to be removed from the list of additional alphabetic

characters. This list is contained in the ctype.cfg file located in the installation_dir/3rdparty/

vdk/common/uni directory. The list defaults to the underscore, the hyphen, and the ampersand

characters, given as hexadecimal character values:

ALPHA: 0x26,0x2d,0x5f

Remove the hyphen (0x2d) from the list, save the ctype.cfg configuration file, and restart the SES.

Afterwards, the content needs to be reindexed using the indexAllObjects Tcl command of the

Content Manager.

3.8 The Tcl Interface

3.8.1 Administration Commands

Collections hold the data of the Infopark Search Cartridge. Essentially, they contain the indexes and

word lists that are produced when documents are indexed.

Switchable collections - the collections used on the live system - are located in the export/offline/

collections directory below the instance directory, i. e., for example, instance/default/export/

offline/collections. Each collection is represented by an individual directory whose name equals

the collection name.

Non-switchable collections are mainly used on the editorial system. They are only used on the live

system if it does not include a Template Engine. The storage location of non-switchable collections is

the data/ses/collections directory below Fiona’s instance directory. Like switchable collections,

non-switchable ones are located in individual subdirectories whose names correspond to the collection

names.

The Autonomy search engine module uses so-called style files when it creates collections. If collections

are created using the createCollection Tcl command described in this section, the supplied style

files located in the config/vdk/style directory are used. If, however, this directory contains a

directory named like the collection to be created, then the style files in this directory will be used.

These files are copied to the style directory below the corresponding collection directory.

Of course you can also use Autonomy’s mkvdk program to create collections. This tool as well as other

administration tools can be found in the directory 3rdparty/vdk/_ilnx21/bin (Unix) or 3rdparty/

vdk/_nti40/bin (Windows).

http://www.infopark.com/1211806/indexAllObjects

Configuration and Administration

Search Server – © 2011 Infopark AG 25/73

The locales and the Autonomy configuration files can be found in the 3rdparty/vdk/common

directory. Each locale has its own directory here whose name equals the name of the locale.

For the purpose of administering collections, numerous Tcl commands are available in the server’s so-

called single mode. In single mode the Search Engine Server is no server but a command line program.

Please note that the Search Engine Server must be stopped prior to executing commands with which

one ore more collections can be modified (see Executing the Search Engine Server).

You can execute the Search Engine Server in single mode by running the executable file in a shell,

specifying the command line argument -single. Under Linux and Solaris this can be done from the

instance’s bin directory:

./SES -single

Under Windows, use the following command:

SES -single

The Search Engine Server then displays a prompt. You can now use all standard Tcl commands as well

as the commands listed in the following. Most of these commands call Autonomy’s mkvdk program.

The Search Engine Server’s commands, however, are easier to use than mkvdk.

3.8.2 aboutCollection

Available for: Search Engine Server

Task: This command displays information about the specified collection (such as the number of

documents in the index or the locale used).

Syntax

aboutCollection collectionName

Function parameters

• collectionName: The name of the collection for which information is to be displayed. For

switchable collections this command refers to the offline collection.

Return value: Information about the collection in textform. If the specified collection does not exist,

the error message "The collection ’collectionName’ does not exist" is displayed.

Example (extract)

SES>aboutCollection sportsNews

mkvdk - Verity, Inc. Version 5.0.1 (_ilnx21, Aug 6 2003)

Collection about resources:

 Last Purge Date: 19-Oct-2010 02:16:50 pm

 Creation Date: 16-Oct-2010 12:11:29 pm

 Modification Date: 19-Oct-2010 02:20:57 pm

 Last Squeeze Date: 0000000000

 Number of Documents: 64071

 Collection Creator: INFOPARK AG

 Collection Name: sportsNews

 ...

mkvdk done

Configuration and Administration

Search Server – © 2011 Infopark AG 26/73

3.8.3 backupCollection

Available for: Search Engine Server

Task: The command creates a copy of a collection.

Syntax

backupCollection collectionName targetDir

Function parameters

• collectionName: The name of the collection to copy. For switchable collections this command

refers to the offline collection.

• targetDir: The target directory of the new collection, relative to the collection’s parent directory.

Under Windows the backslash must not be used as path separator. Use two backslashes or the

normal slash instead.

Return value: none.

Example

SES>backupCollection sportsNews liveSportsNews

3.8.4 createCollection

Available for: Search Engine Server

Task: This command creates a new collection.

Syntax

createCollection collectionName [switchable]

Function parameters

• collectionName: The name of the collection to be created. The name must be a valid file name. A

collection with this name, whether switchable or not, must not already exist.

• switchable: The value can be 0 or 1. It determines whether the collection to be created is to be

switchable (1) or not (0, the default). In conjunction with the incremental export, i.e. when using

the Search Server together with the Template Engine you require switchable collections. Non-

switchable collections are meant to be used only with content that is exported statically.

Return value: If the command has been be executed successfully it returns the name of the collection

created.

Additional Information

• The names of the default collections are cm-contents (editorial system) and live-docs (live system).

The Search Engine Server creates these collections automatically at startup if no collections exist.

Configuration and Administration

Search Server – © 2011 Infopark AG 27/73

• The style files used for creation are located in the config/vdk/style directory. If, however,

this directory contains a directory named like the collection to be created, then the style files in

this directory will be used. These files are copied to the style directory below the corresponding

collection directory.

Example

SES>createCollection sportsNews

sportsNews

3.8.5 deleteCollection

Available for: Search Engine Server

Task: The command completely deletes a collection, including all its data and its configuration.

The user is not asked to confirm this action. Therefore, the command should be used only after the

consequences have been considered thoroughly.

Syntax

deleteCollection collectionName

Function parameters

• collectionName: The name of the collection to delete. For switchable collections this command

refers to the offline collection.

Return value: none.

Example

SES>deleteCollection sportsNews

3.8.6 listCollections

Available for: Search Engine Server

Task: This command returns the list of the names of all collections of the Verity search engine module.

Syntax

listCollections

Function parameters

The command has no function parameters.

Return value: The list of the collections known to the Autonomy search module

Example

SES>listCollections

cm-contents live-docs

Configuration and Administration

Search Server – © 2011 Infopark AG 28/73

3.8.7 purgeCollection

Available for: Search Engine Server

Task: This command empties a collection by removing all indexed documents from it. The collection

itself, however, is preserved.

Syntax

purgeCollection collectionName

Function parameters

• collectionName: The name of the collection to purge. For switchable collections this command

refers to the offline collection.

Return value: The command has no return value. If the specified collection does not exist, the error

message "The collection ’collectionName’ does not exist." is displayed. If the command fails, the

message "Purging collection ’collectionName’ failed." is displayed.

Example

SES>purgeCollection sportsNews

3.8.8 repairCollection

Available for: Search Engine Server

Task: This command tries to repair a collection that has become inconsistent on a file level because of

an unwanted deletion, for example.

Syntax

repairCollection collectionName

Function parameters

• collectionName: The name of the collection to be repaired. For switchable collections this

command refers to the offline collection.

Return value: The command returns information about the actions taken.

Example (for a collection that does not need to be repaired):

SES>repairCollection sportsNews

mkvdk - Verity, Inc. Version 2.7.0 (_ilnx21, Feb 15 2001)

mkvdk done

Configuration and Administration

Search Server – © 2011 Infopark AG 29/73

3.8.9 Other Commands

Next to the commands for collection administration, the following commands are available in the Tcl

interface of the Search Engine Server.

Commands only available in the SES

app flushQueue

app holdQueue

app resumeQueue

Commands also available in other CMS Fiona applications

app get

decodeData

decodeFile

decodeToString

encodeData

encodeFile

stream_uploadFile

stream_uploadBase64

stream_downloadFile

stream_downloadBase64

app flushQueue

Available for: Search Engine Server

Task: This command causes the Search Engine Server to start processing indexing requests,

independently of the system configuration entries mentioned below. The command can only be

executed if the SES is in the indexingNormal state.

Syntax

app flushQueue

Additional information

The state of the SES with respect to indexing can be determined by reading out the

sesCommandState.state file located in the cmsInstanceDir/data/ses/otherData/002/008

directory. The file contents has the following meaning:

• indexingNormal: Indexing requests are accepted and processed in accordance with the presets

given by the tuning.indexing.interval and tuning.indexing.maxBulkSize system

configuration entries. This state is induced by the app resumeQueue command.

• indexingDelayed: Indexing requests are not processed. This state is induced by the

app holdQueue command.

Function parameters: none.

Return value on success: status information.

app holdQueue

Available for: Search Engine Server

http://www.infopark.com/1211386/app-get
http://www.infopark.com/1211422/decodeData
http://www.infopark.com/1211434/decodeFile
http://www.infopark.com/1211446/decodeToString
http://www.infopark.com/1211458/encodeData
http://www.infopark.com/1211470/encodeFile
http://www.infopark.com/1211650/stream-uploadFile
http://www.infopark.com/1211662/stream-uploadBase64
http://www.infopark.com/1211674/stream-downloadFile
http://www.infopark.com/1211686/stream-downloadBase64
http://www.infopark.com/1214279/08-tuning
http://www.infopark.com/1214279/08-tuning

Configuration and Administration

Search Server – © 2011 Infopark AG 30/73

Task: This command causes the Search Engine Server to not accept new indexing requests. The

Template Engine uses this command prior to synchronizing collections.

Syntax

app holdQueue

Additional information

The state of the SES with respect to indexing can be determined by reading out the

sesCommandState.state file located in the cmsInstanceDir/data/ses/otherData/002/008

directory. The file contents has the following meaning:

• indexingNormal: Indexing requests are accepted and processed in accordance with the presets

given by the tuning.indexing.interval and tuning.indexing.maxBulkSize system

configuration entries. This state is induced by the app resumeQueue command.

• indexingDelayed: Indexing requests are not processed. This state is induced by the

app holdQueue command.

Function parameters: none.

Return value on success: status information.

app resumeQueue

Available for: Search Engine Server

Task: This command causes the Search Engine Server to accept and process indexing requests again.

The Template Engine uses this command after it has finished synchronizing collections.

Syntax

app resumeQueue

Additional information

The state of the SES with respect to indexing can be determined by reading out the

sesCommandState.state file located in the cmsInstanceDir/data/ses/otherData/002/008

directory. The file contents has the following meaning:

• indexingNormal: Indexing requests are accepted and processed in accordance with the presets

given by the tuning.indexing.interval and tuning.indexing.maxBulkSize system

configuration entries. This state is induced by the app resumeQueue command.

• indexingDelayed: Indexing requests are not processed. This state is induced by the

app holdQueue command.

Function parameters: none.

Return value on success: status information.

http://www.infopark.com/1214279/08-tuning
http://www.infopark.com/1214279/08-tuning
http://www.infopark.com/1214279/08-tuning
http://www.infopark.com/1214279/08-tuning

The Syntax of the Search Queries

Search Server – © 2011 Infopark AG 31/73

4
4 The Syntax of the Search Queries

4.1 Search Queries

A query expression (also called search query in the following) defines the criteria according to which

the search module of the Infopark Search Server performs a search. A query expression consists of

search words, operators, and modifiers:

Operators and modifiers are keywords that are used in search expressions to define the relationship

between search words. Only documents in which the search words have the specified relationship can

show up in the search result. For example, the query expression

cherries <#AND> <#NOT> apricots

searches for documents containing the search words cherries but not apricots.

Keywords should always be enclosed in angle brackets. If the Search Engine is operated with a non-

English localisation, keywords must always be prefixed with a Pound sign (or hash mark, depending on

your keyboard’s layout). This is not necessary if the English locale is used.

With operator and modifier names the Search Engine does not distinguish between uppercase and

lowercase letters.

4.1.1 Parser

The Search Engine is equipped with three so-called parsers which analyze the user’s search queries

and perform the corresponding search actions. The parsers differ from each other in the way they

analyze and interpret query expressions. Each of the three parsers was designed for a certain field of

application. The parser to be used can be specified in XML search query requests to the Search Engine

Server. Therefore, a more or less complex query language can be provided in query forms, depending

on the target user group.

The Syntax of the Search Queries

Search Server – © 2011 Infopark AG 32/73

A parser should not be equated with the query syntax it supports. It is, for example, possible to use the

simple syntax as well as explicit syntax in the simple parser. Furthermore, explicit syntax allows you to

use several notations.

4.1.2 Simple Parser

The simple parser is a universal one because it can be used for queries in simple as well as in explicit

syntax. The parser is favoured in environments in which the users want to get the best results with the

least effort.

The simple parser converts simple queries to explicit queries, adding operators where it seems

appropriate. Each search word is implicitly preceeded with the MANY and the STEM operators.

• MANY causes the document’s relevance to grow as the density of a word’s occurrence in a document

grows. Density is a relative measure that specifies the relationship between the number of

occurrences of a search word and the amount of text it contains.

• STEM causes the search to include also words that are variations of the search word.

If a user enters search words separated with commas, then the words are combined with the ACCRUE

operator. This operator causes a document’s relevance to grow as the absolute number of occurrences

of the search word grows. A query such as

apple, banana, orange

is therefore converted by the parser as follows:

<#accrue>(<#many><#stem>apple, <#many><#stem>banana, <#many><#stem>orange)

4.1.3 Explicit Parser

The explicit parser is limited to processing search expressions written in explicit syntax. It was designed

for environments in which search queries are generated under control of a software program. In such

environments, instead of typing operators, users use checkboxes, for example, to select the operations

to be applied to the search words that have been entered.

Search queries in explicit syntax can be made using prefix or infix notation:

• Prefix notation uses parentheses to make an operator’s precedence explicit. For example, the

expression <#OR> (a, <#AND> (b, c)) retrieves documents containing the search word a or a

combination of b and c.

• With infix notation the precedence of operators is implicit, i. e. associated with the operators

themselves, unless the precedence is modified with parentheses. This applies mainly to the AND

and OR operators of which OR has less precedence. As a consequence, search words combined with

AND are processed before those combined with OR. Example: a <#AND> b <#OR> c searches for

documents containing a as well as b, or c.

The following query is an example for prefix notation:

<#paragraph>("vehicle", <#sentence>("safety", <#phrase>("no", "compromise")))

The Syntax of the Search Queries

Search Server – © 2011 Infopark AG 33/73

Using infix notation, this query is stated as follows:

"vehicle" <#paragraph> "safety" <#sentence> "no" <#phrase> "compromise"

Literal Text

When you enclose individual words in double quotation marks, the Autonomy search engine interprets

those words literally. For example, by entering the word "film" explicitly in double-quotation marks,

the words "films", "filmed", and "filming" will not be considered in the search:

"film"

The quotation marks are a syntactical element of the explicit syntax and can be used in the simple and

the explicit parser. The following example retrieves documents that contain both the literal phrase

"pharmaceutical companies" and the literal word "stock”:

AND ("pharmaceutical companies", "stock")

The following example retrieves documents containing the phrase "black and white":

<PHRASE> (black "and" white)

The PHRASE operator does require angle brackets, and the "and" is enclosed in double quotation

marks because it is to be interpreted as a literal word, not as an operator.

Additionally, when you enter a topic name enclosed in double quotation marks, the search engine will

interpret the topic name as a literal word instead of a topic. This is useful if you want to search for a

word that is the same as the name of a topic.

4.1.4 Freetext Parser

The free text parser allows you to make search queries that equal sentences or part of a sentence. It

treats all text as a series of search words. As a consequence, operators will not be identified.

The free text parser generates from a search query a request in explicit syntax by removing

unimportant words like articles, prepositions, and conjunctions from the query and combining the

search words, resulting in a sequence of words. The parser allows users to make queries in the form of

short questions.

Using the FREETEXT operator, the free text functionality is also available in the simple and explicit

parsers.

4.2 Non-English Environments

4.2.1 Using the English-Language Query Language

The keywords (operator and modifier names) in search queries are language-specific. If, for example,

the Search Cartridge is operated using the German-language setting germanx (an optional so-called

locale), the German equivalents of some English operator and modifier names will be identified as

operators or modifiers, respectively, even if they were meant to be search words in a query. These

The Syntax of the Search Queries

Search Server – © 2011 Infopark AG 34/73

words "und", "oder", "nicht" and others) must be quoted when they are to be interpreted as search

words. Analogously, English words such as "and", "or", "any", "not" that correspond to operator or

modifier names need to be enclosed in quotes if they are meant literally.

It is possible and recommendable to use the English-language operator and modifier names in search

queries. This can be done by prefixing each operator or modifier name with a Pound sign (or hash

mark, depending on your keyboard layout). In order to search for the phrase "Infopark AG" in a non-

English-language environment, enter the following expression:

<#PHRASE> Infopark AG

In explicit syntax the expression looks like this:

<#PHRASE> (Infopark, AG)

4.2.2 Tokenization

In environments in which languages such as English or German are used, the Search Cartridge can

interpret space characters as word separators. For these languages no special language-specific

tokenization modules are required since the Search Cartridge is able to identify words, phrases, and

sentences appropriately. However, for other languages, such as Japanese and Chinese, a tokenization

module is required in order to determine the bounds of words. If you are using a special tokenization

module, some sections of the following query language descriptions might not apply.

Operators and Modifiers

Search Server – © 2011 Infopark AG 35/73

5
5 Operators and Modifiers

5.1 Operator Types

An operator expresses an operation that is applied to a part of the search expression. This operation

defines the restrictions a document must meet in order to be placed in the resulting list of hits. Many

operators exist, and they can be classified according to their type:

Standard Operators

• Concept operators

• Evidence operators

• Proximity operators

Special operators

• Operators for analyzing written language

• Ranking operators

• Field operators and relational operators

5.1.1 Concept Operators

Concept operators combine the meaning of search elements to identify a concept in a document.

Documents retrieved using concept operators are relevance-ranked. The following table describes each

concept operator:

Operator name Description

ACCRUE Selects documents that include at least one of the search elements you specify.
The more search elements are present, the higher the score will be.

ALL Selects documents that contain all of the search elements you specify. A score
of 100 is assigned to each retrieved document. ALL and AND are similar and
they retrieve the same results. Queries using ALL are not relevance-ranked (all
retrieval results are assigned a score of 100).

AND Selects documents that contain all of the search elements you specify. A score
is calculated for each retrieved document. AND and ALL are similar and they
retrieve the same results. Queries using AND are relevance-ranked (retrieved
documents are assigned a score between 0 and 100).

Operators and Modifiers

Search Server – © 2011 Infopark AG 36/73

ANY Selects documents that contain at least one of the search elements you specify. A
score of 100 is assigned to each retrieved document. ANY and OR are similar and
they retrieve the same results. Queries using ANY are not relevance-ranked (all
retrieval results are assigned a score of 100).

OR Selects documents that contain at least one of the search elements you specify.
A score is calculated for each retrieved document. OR and ANY are similar and
they retrieve the same results. Queries using OR are relevance-ranked (retrieval
documents are assigned a score between 0 and 100).

TOPIC Selects documents that contain at least one of the search elements you specify,
covered by the specified topic. A score is calculated for each retrieved document.
How topics work and how they can be configured is described in the Verity
documentation which is available as an option.

5.1.2 Evidence Operators

Evidence operators can be used to specify either a basic word search or an intelligent word search.

A basic word search finds documents that contain only the word or words specified in the query. An

intelligent word search expands the query terms to create an expanded word list so that the search

returns documents that contain variations of the query terms. For example, the THESAURUS operator

selects documents containing the word specified, as well as its synonyms.

Documents retrieved using evidence operators are not relevance-ranked unless you use the MANY

modifier. The following table describes each evidence operator.

Operator name Description

WORD Performs a basic word search, selecting documents that include one or more
instances of the specific word you entered.

STEM Expands the search to include the word you entered and its variations.

THESAURUS Expands the search to include the word you entered and its synonyms.

WILDCARD Matches wildcard characters included in search strings. Certain characters
automatically indicate a wildcard specification.

SOUNDEX Expands the search to include the word you enter and one or more words that
"sound like", or whose letter pattern is similar to, the word specified. Collections
do not have sound-alike indexes by default; to use this feature sound-alike
indexes must be built.

TYPO/N Expands the search to include the word you enter plus words that are similar
to the query term. This operator performs "approximate pattern matching" to
identify similar words.

5.1.3 Proximity Operators

Proximity operators specify the relative location of specific words in the document; i. e., specified

words must be in the same phrase, paragraph, or sentence for a document to be retrieved. In the case

of the NEAR and NEAR/N operators, retrieved documents are relevance-ranked based on the proximity

of the specified words.

Operators and Modifiers

Search Server – © 2011 Infopark AG 37/73

When proximity operators are nested, the ones with the broadest scope should be used first; that is,

phrases or individual words can appear within SENTENCE or PARAGRAPH operators, and SENTENCE

operators can appear within PARAGRAPH operators. The following table describes each proximity

operator.

Operator name Description

IN Selects documents that contain specified values in one or more document zones.
A document zone represents an attribute in a content, for example the date of
the last change (lastChanged) or the body text.

PHRASE Selects documents that include a phrase you specify. A phrase is a grouping of
two or more words that occur in a specific order.

SENTENCE Selects documents that include all of the words you specify within the same
sentence.

PARAGRAPH Selects documents that include all of the search elements you specify within the
same paragraph.

NEAR Selects documents containing specified search terms, where the closer the search
terms are within a document, the higher the document’s score.

NEAR/N Selects documents containing two or more search terms within N number of
words of each other, where N is an integer up to 1024. The closer the search
terms are within a document, the higher the document’s score.

5.1.4 Operators for Analyzing Written Language

The FREETEXT and LIKE operators serve to analyze written language. The search engine translates

the text of the search query into the search syntax. The query is then performed, and the documents

found are ranked according to their relevance. The two operators are intended mainly for application

development.

Operator name Description

FREETEXT This operator evaluates the search query text as if the query had been made
in the free text parser (see Search Queries). In particular, articles, prepositions,
and conjunctions are removed. The word order is taken into account as well.
The free text parser has been optimized for analyzing short questions in written
language and translate them into the query language.

LIKE This operator performs a search on the basis of positive or negative sample texts
and ranks the documents according to the degree of correspondence (QBE =
"Query by example").

5.1.5 Scoring Operators

The scoring operators influence the way in which the search module ranks the documents it finds, i.

 e. how it calculates their scores. These operators can be combined with each other and with other

operators of the query language.

Operators and Modifiers

Search Server – © 2011 Infopark AG 38/73

When a scoring operator is used, the search engine first calculates a separate score for each element of

the search expression found in the document. Then the resulting score is calculated from these scores

using a mathematical operation.

The YESNO operator can be useful in many situations, whereas the PRODUCT, SUM, and COMPLEMENT

operators are meant to be used by application developers who want to generate queries

programmatically.

Operator name Description

COMPLEMENT This operator subtracts a document’s total score from 100.

PRODUCT Using this operator, documents can be scored in a more differentiated way. The
individual results of the search are multiplied with each other, and the resulting
value is divided by 100.

SUM This operator calculates the sum of the individual scores up to a total of 100.

YESNO This operator allows you to limit a search to only those documents matching
a query, without the score of that query affecting the final scores of the
documents. The operator sets an individual result to 100 if it is greater than 0,
otherwise it remains 0.

5.1.6 Field Operators and Relational Operators

Field operators search document fields that have been defined in a collection. These operators perform

filter functions by selecting documents whose fields have the specified values. Searching in document

fields is slower than searching in zones. Normally it is not necessary to search in fields because most of

the fields are present as zones as well.

Documents that are retrieved using field operators are neither relevance-ranked nor can the MANY

modifier be used in conjunction with field operators.

Using the following relational operators, the values of document fields can be compared with search

words: = (equal), != (not equal), > (greater than), >= (greater than or equal), < (less than), <= (less than

or equal).

For text comparisons the following field operators are available:

Operator name Description

CONTAINS Selects documents by matching the word or phrase you specify with the values
stored in a specific document field. Documents are selected only if the search
elements specified appear in the same sequential and contiguous order in the
field value.

MATCHES Selects documents by matching the character string you specify with values
stored in a specific document field. Documents are selected only if the search
elements specified match the field value exactly. If a partial match is found, a
document is not selected.

STARTS Selects documents by matching the character string you specify with the starting
characters of the values stored in a specific document field.

ENDS Selects documents by matching the character string you specify with the ending
characters of the values stored in a specific document field.

Operators and Modifiers

Search Server – © 2011 Infopark AG 39/73

SUBSTRING Selects documents by matching the character string you specify with a portion of
the strings of the values stored in a specific document field.

5.2 Operator Reference

This section describes each search operator in detail. Where appropriate, each description includes an

example of simple syntax and explicit syntax. Operators are listed alphabetically.

Please note that in environments with a locale other than English, the operators must always be

preceded by a Pound sign (or hash mark) and enclosed in angle brackets (example: <#AND>).

Furthermore, if "and", "or", "any", "all" or "not" or their equivalents in another language are used

as search words, then these words must be enclosed in quotation marks. Otherwise they will be

interpreted as operator or modifier names.

5.2.1 ACCRUE

Selects documents that include at least one of the search elements you specify. Valid search elements

are two or more words or phrases. Retrieved documents are relevance-ranked.

The ACCRUE operator scores retrieved documents according to the presence of each search element

in the document using "the more, the better” approach: the more search elements found in the

document, the better the document’s score. Following are examples of search syntax.

To select documents containing stemmed variations of the words "computers" and "laptops", you can

enter any of the following:

computers <ACCRUE> laptops

computers, laptops

<ACCRUE> (computers, laptops)

5.2.2 ALL

Selects documents that contain all of your search elements. Documents retrieved using the ALL

operator are not relevance-ranked. Scores cannot be assigned to this operator.

To select documents which contain stemmed variations of the phrase "pharmaceutical companies" and

stemmed variations of the word "stock", you can enter the following:

pharmaceutical companies ALL stock

ALL (pharmaceutical companies, stock)

Only those documents that contain both search elements, or stemmed variations of them (for example,

"pharmaceutical company", "stocks", etc.), are retrieved. Each retrieved document is assigned a score

of 100.

Operators and Modifiers

Search Server – © 2011 Infopark AG 40/73

5.2.3 AND

Selects documents that contain all of your search elements. Documents retrieved using the AND

operator are relevance-ranked.

To select documents which contain stemmed variations of the phrase "pharmaceutical companies" and

stemmed variations of the word "stock", you can enter the following:

pharmaceutical companies AND stock

AND (pharmaceutical companies, stock)

Only those documents that contain both search elements, or stemmed variations of them (for example,

"pharmaceutical company", "stocks" etc.), are retrieved. A calculated score is assigned to each

retrieved document.

5.2.4 ANY

Selects documents that show evidence of at least one of your search elements. Retrieved documents

are not relevance-ranked. Scores cannot be assigned to this operator.

To select documents that contain stemmed variations of the word "election" or the phrases "national

elections" or "senatorial race", you can enter the following:

election ANY national elections ANY senatorial race

ANY (election, national elections, senatorial race)

Only those documents that contain at least one of the search elements, or a stemmed variation of at

least one of them, are retrieved. Each retrieved document is assigned a score of 100.

5.2.5 IN

Selects documents that contain specified values in one or more document zones. A document zone

represents a field in a version, for example the title or the body text (blob). The specified name must

exactly match the zone name.

The following query expression searches document zones named "summary" for the word "safety"

"safety" <IN> summary

To search with multiple words, phrases, or topics enclose them in parentheses. The following query

expression searches document zones named "summary" for the word "safety" and stemmed variations

of the word "warning"

("safety", warning) <IN> summary

To search multiple zones, separate them with commas and enclose them in parentheses. The following

query expression searches both the "summary" zone and the "title" zone for the word "safety" and

stemmed variations of the word "warning"

("safety", warning) <IN> (summary, title)

Operators and Modifiers

Search Server – © 2011 Infopark AG 41/73

You must enclose query expressions containing commas in parentheses. The following example

searches the "summary" zone for the word "safety" and stemmed variations of the phrase

"environmental regulation".

("safety", environmental regulation) <IN> summary

The following query expression searches both the "summary" zone and the "title" zone for the word

"safety" and stemmed variations of the phrase "environmental regulation".

("safety", environmental regulation) <IN> (summary, title)

5.2.6 NEAR

Selects documents containing the specified search terms within close proximity to each other.

Document scores are calculated based on the relative number of words between search terms. For

example, if the search expression includes two words, and those words occur next to each other in a

document (so that the region size is two words long), then the score assigned to that document is 100.

Thus, the document with the smallest possible region containing all search terms always receives the

highest score. As search terms appear further apart, the score drops toward zero. A document receives

a zero score only if it does not contain all search terms.

The NEAR operator is similar to the other proximity operators in the sense that the search words

you enter must be found within close proximity of one another. However, unlike other proximity

operators, the NEAR operator calculates relative proximity and assigns scores based on its calculations.

To retrieve relevance-ranked documents that contain stemmed variations of the words "war" and

"peace" within close proximity to each other, you can enter the following:

war <NEAR> peace<NEAR>(war, peace)

5.2.7 NEAR/N

Selects documents containing two or more words within N number of words of each other, where N is

an integer. Document scores are calculated based on the relative distance of the specified words when

they are separated by N words or less.

For example, if the search expression NEAR/5 is used to find two words within five words of each

other, a document that has the specified words within three words of each other is scored higher than

a document that has the specified words within five words of each other.

The N variable can be an integer between 1 and 1024, where NEAR/1 searches for two words that are

next to each other. If N is 1000 or above, you must specify its value without commas, as in NEAR/1000.

You can specify multiple search terms using multiple instances of NEAR/N, as long as the value of N is

the same.

For example, to retrieve relevance-ranked documents that contain stemmed variations of the words

"commute", "bicycle", "train", and "bus" within 10 words of each other, you can enter the following:

Operators and Modifiers

Search Server – © 2011 Infopark AG 42/73

commute <NEAR/10> bicycle <NEAR/10> train <NEAR/10> bus

You can use the NEAR/N operator with the ORDER modifier to perform ordered proximity searches.

5.2.8 OR

Selects documents that show evidence of at least one of your search elements. Documents selected

using the OR operator are relevance-ranked.

To select documents that contain stemmed variations of the word "content" or "editing" or the phrase

"content management", you can enter the following:

content OR editing OR content management

OR (content, editing, content management)

Only those documents that contain at least one of the search elements, or a stemmed variation of at

least one of them, are retrieved. A calculated score is assigned to each retrieved document.

5.2.9 PARAGRAPH

Selects documents that include all of the search elements you specify within a paragraph. Valid search

elements are two or more words or phrases. You can specify search elements in a sequential or a

random order. Documents are retrieved only if the search elements appear in the same paragraph.

To retrieve relevance-ranked documents that contain stemmed variations of the word "drug" and the

phrase "cancer treatment" in the same paragraph, you can enter the following:

drug <PARAGRAPH> cancer treatment

<PARAGRAPH> (drug, cancer treatment)

To search for three or more words or phrases, you must use the PARAGRAPH operator between each

word or phrase.

You can use the PARAGRAPH operator with the ORDER modifier to perform ordered proximity searches.

5.2.10 PHRASE

Selects documents that include a phrase you specify. A phrase is a grouping of two or more words that

occur next to each other in a specific order.

By default, two or more words separated by a space are considered to be a phrase in simple syntax.

In addition, two or more words enclosed in double quotes are considered to be a phrase. To retrieve

relevance-ranked documents that contain the phrase "mission oak", you can enter any of the

following:

mission oak

"mission oak"

mission <PHRASE> oak

<PHRASE> (mission, oak)

Operators and Modifiers

Search Server – © 2011 Infopark AG 43/73

5.2.11 SENTENCE

Selects documents that include all of the words you specify within a sentence. You can specify search

elements in a sequential or a random order. Documents are retrieved only if the search elements

appear in the same sentence.

To retrieve relevance-ranked documents that contain stemmed variations of the words "American"

and "innovation" within the same sentence, you can enter the following:

american <SENTENCE> innovation

<SENTENCE> (american, innovation)

You can use the SENTENCE operator with the ORDER modifier to perform ordered proximity searches.

5.2.12 SOUNDEX

Selects documents that include one or more words that sound like, or whose letter pattern is similar to,

the word specified. Words have to start with the same letter as the word you specify to be selected.

In order to be able to search in collections using the SOUNDEX operator, all documents must have been

indexed with the Soundex option. This option can be added to the WORD-IDXOPTS parameter in the

style.prm file. Afterwards all documents must be reindexed.

For example, to retrieve documents containing a word that is close in structure to the word "sale", you

can enter the following:

<SOUNDEX> sale

The documents retrieved will include words such as "sale", "sell", "seal", "shell", "soul", and "scale".

Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><SOUNDEX> sale

5.2.13 STEM

Selects documents that include one or more variations of the search word you specify. For example, to

retrieve documents containing a variation of the word "film", you can enter the following:

<STEM> film

The documents retrieved will include words such as "films", "filmed", and "filming". Documents are

not relevance-ranked unless the MANY modifier is used, as in:

<MANY><STEM> film

Operators and Modifiers

Search Server – © 2011 Infopark AG 44/73

5.2.14 THESAURUS

Selects documents that contain one or more synonyms of the word you specify. For example, to

retrieve documents containing synonyms of the word "altitude" you can enter the following:

<THESAURUS> altitude

The documents retrieved will include words suchas "height" or "elevation." Documents are not

relevance-ranked unless the MANY modifier is used, as in:

<MANY><THESAURUS> altitude

5.2.15 TOPIC

Topics are search words that the Search Cartridge expands, resulting in a search query. The generated

search query combines the search expressions that previously have been defined as belonging to this

topic.

In the simple parser topics are recognized even if the TOPIC operator is not specified. In the explicit

parser each of the following formats can be used to specify a topic in an expression:

{topicname}

<#TOPIC>topicname

<#TOPIC>(topicname)

In the examples above, topicname is the name of the topic to be used in the expression.

5.2.16 TYPO/N

Selects documents that contain the word you specify plus words that are similar to the query term. The

TYPO/N operator performs approximate pattern matching to identify similar words. This makes it ideal

for use in an environment where documents have been scanned using optical character recognition

(OCR).

The optional N variable in the operator name expresses the maximum number of errors between the

query term and a matched term, a value called the error distance. If N is not specified, an error distance

of 2 is used.

The error distance between two words is based on the calculation of errors, where an error is defined

to be a character insertion, deletion, or transposition. For example, for these sets of words, the second

word matches the first within an error distance of 1:

mouse, house (m # h)

agreed, greed (a is deleted)

cat, coat (o is inserted)

For the query below, documents with the words "sweeping" and "swimming" will match, since there

are 3 transpositions in the word (e ? i, e ? m, p ? m).

<TYPO/3> sweeping

Operators and Modifiers

Search Server – © 2011 Infopark AG 45/73

Both of the queries below will return the same results. Documents containing the words "swept" and

"kept" will match, since the "kept" word contains 1 transposition and 1 deletion.

<TYPO/2> swept

<TYPO> swept

The TYPO/N operator must scan the collection's word list in order to find candidate matching words.

This makes it impractical for use in large collections (greater than 100,000 documents unless a current

spanning word list is available) or in performance-sensitive environments. Performance can be

improved by generating a spanning word list for the collections to be used.

Please note these limitations: A query term specified with TYPO/N can have a maximum length of 32

characters. Also, TYPO/N is not supported with multi-byte character sets.

5.2.17 WILDCARD

Selects documents that contain matches to a wildcard character string. The WILDCARD operator lets

you define a wildcard string, which can be used to locate related word matches in documents. A

wildcard string consists of special characters.

For example, to retrieve documents that contain words such as "pharmaceutical", "pharmacology",

and "pharmacodynamics" you can enter the following:

pharmac*

Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY> pharmac*

The wildcard characters "*" and "?" automatically enable wildcard searching. To use other constructs,

use the WILDCARD operator explicitly with any of the characters below.

Character Function

? Specifies one of any alphanumeric character,
as in ?an, which locates "ran", "pan", "can",
and "ban". It is not necessary to specify the
WILDCARD operator if you use the question mark.
The question mark is ignored in a set ([]) or in
an alternative pattern ({ }).

* Specifies zero or more of any alphanumeric
character, as in corp*, which locates "corporate",
"corporation", "corporal", and "corpulent". It is
not necessary to specify the WILDCARD operator
when you use the asterisk; you should not use the
asterisk to specify the first character of a wildcard
string. The asterisk is ignored in a set ([]) or in
an alternative pattern ({ }).

[] Specifies one of any character in a set, as in
<WILDCARD> 'c[auo]t', which locates "cat",

Operators and Modifiers

Search Server – © 2011 Infopark AG 46/73

"cut", and "cot". You must enclose the word that
includes a set in backquotes, and there can be no
spaces in a set.

{ } Specifies one of each pattern separated by a
comma, as in
<WILDCARD> 'bank{s,er,ing}', which locates
"banks", "banker", and "banking". You must
enclose the word that includes a pattern in
backquotes, and there can be no spaces in a set.

^ Specifies one of any character not in the set, as
in <WILDCARD> 'st[^oa]ck', which excludes
"stock" and "stack" but locates "stick" and
"stuck". The caret (^) must be the first character
after the left bracket ([) that introduces a set.

- Specifies a range of characters in a set, as in
<WILDCARD> 'c[a-r]t', which locates every
three-letter word from "cat" to "crt".

Searching for Non-Alphanumeric Characters

Remember that you can search for non-alphanumeric characters only if the style.lex file used to

create the collections you are searching is set up to recognize the characters you want to search for.

Please consult your collection administrator for more information.

Searching for Wildcard Characters as Literals

Provided the style.lex file is set up for the collections to be searched, you can search for a word

containing a wildcard character such as "/" or "*" by preceding the wildcard character with a

backslash. For example, if you enter the following search string:

abc*d

the engine finds five-character words matching the "abc*d” string. When you want to match a literal

backslash, enter two backslashes.

Searching for Special Characters as Literals

The following non-alphanumeric characters perform special, internal search engine functions, and by

default are not treated as literals in a wildcard string:

• comma ,

• left and right parentheses ()

• double quotation mark "

• backslash \

• at sign @

• left curly brace {

• left bracket [

• less than sign <

• backquote `

Operators and Modifiers

Search Server – © 2011 Infopark AG 47/73

To interpret special characters as literals, the whole wildcard string needs to be enclosed in

backquotes. For example, to search for the wildcard string "a{b", you enclose the string with

backquotes, as follows:

<WILDCARD> `a{b`

To search for a wildcard string that includes the literal backquote character, you need to use two

backquotes together and enclose the whole wildcard string with backquotes, as follows:

<WILDCARD> `*n``t`

You can search for backquotes only if the style.lex file used to create the collections you are

searching is set up to recognize the backquote character.

5.2.18 WORD

Selects documents that include one or more instances of a word you specify. For example, to search

for documents that contain the word "rhetoric", without also considering the words "rhetorical" and

"rhetorician," you can enter the following:

<WORD> rhetoric

Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><WORD> rhetoric

5.3 Overview of Special Operators

The documents in this section describe the special operators of the Search Cartridge. Where

appropriate, each description includes an example of simple syntax and explicit syntax. Operators are

listed alphabetically. The relational operators are listed at the end of this section.

Please note that in environments with a locale other than English, the operators must always be

preceded by a Pound sign (or hash mark) and enclosed in angle brackets (example: <#AND>).

Furthermore, if and, or, any, all or not or their equivalents in another language are used as search

words, then these words must be enclosed in quotation marks. Otherwise they will be interpreted as

operator or modifier names.

5.3.1 COMPLEMENT

Calculates scores for documents matching a query by taking the complement (subtracting from 1) the

scores for the query’s search elements. Following is an example of search syntax:

<COMPLEMENT> ("computers")

Operators and Modifiers

Search Server – © 2011 Infopark AG 48/73

The COMPLEMENT operator is a unary operator. It multiplies search elements as specified. The elements

are combined, using the ACCRUE operator by default, to generate a single score which is then

complemented. A sample query expression with two search elements is below:

<COMPLEMENT> ("computers","laptops")

In the above example, the query is evaluated as the word "computers" accrued using the ACCRUE

operator with the word "laptops". The COMPLEMENT operator is applied to the result.

5.3.2 CONTAINS

Selects documents by matching the word or phrase you specify with values stored in a specific

document field. Documents are selected only if the search elements specified appear in the same

sequential and contiguous order in the field value.

When you use the CONTAINS operator, you specify the field name to search, and the word or phrase to

search for.

With the CONTAINS operator, the words stored in a document field are interpreted as individual,

sequential units. You can specify one or more of these units as search criteria. To specify multiple

words, each word must be sequential and contiguous, and must be separated by a blank space.

For example, the following title contains four sequential words:

Last Exit to Brooklyn

1. Last

2. Exit

3. to

4. Brooklyn

The following examples demonstrate how you can use the CONTAINS operator with sequential,

contiguous words to match the document title listed above, assuming it is stored in a title field:

TITLE <CONTAINS> Last Exit

TITLE <CONTAINS> to Brooklyn

The following examples show how you can use a question mark (?) to represent individual variable

characters of a word, and an asterisk (*) to match multiple variable characters of a word:

TITLE <CONTAINS> La?? Exit

TITLE <CONTAINS> Exit to Br*

Question marks and asterisks can be used to represent characters that are part of a word but not white

space that appears between words.

The CONTAINS operator does not recognize non-alphanumeric characters. The CONTAINS operator

interprets non-alphanumeric characters as spaces and treats the separated parts as individual units.

For example, if you have defined a dash (-) as a valid character, and you enter search criteria that

include this character, as in "on-line", this results in two individual units, as follows:

Operators and Modifiers

Search Server – © 2011 Infopark AG 49/73

TITLE <CONTAINS> on line

5.3.3 ENDS

Selects documents by matching the character string you specify with the ending characters of the

values stored in a specific document field. For example, assume a document field named AUTHOR

has been defined. To select documents written by Milner, Wagner, and Faulkner, you can enter the

following:

AUTHOR <ENDS> ner

5.3.4 = (equal)

Selects documents whose document fields contain exactly the same values as the specified string that is

being searched for. For example, you can search for documents of the document type as follows:

objType = document

5.3.5 FREETEXT

This operator is meant to be used in application development environments. It interprets text using

the free text query parser and scores documents using the resulting query expression. All retrieved

documents are relevance-ranked.

When search expressions are analyzed, unimportant words (so-called stop words) such as articles,

conjunctions, and prepositions are removed. Characteristics of natural language, like noun phrases and

word order, are taken into account as the resulting query is constructed. The retrieved documents are

relevance-ranked. For example:

<FREETEXT> ("peace negotiations in the Middle East")

This query could be interpreted as follows:

<#ACCRUE> (<#PHRASE> "peace negotiations", <#PHRASE> "Middle East")

The FREETEXT operator makes the functionality of the free text parser available and additionally

permits you to combine free text search queries with other search criteria, giving you full access to the

query language. Example:

<#ACCRUE> (<#PHRASE> "peace negotiations", <#PHRASE> "Middle East") <#AND> (DATE >

 20101224000000)

The quotation marks are required. If you want to include embedded quotes, they must be preceded

with backslashes, as:

Operators and Modifiers

Search Server – © 2011 Infopark AG 50/73

<FREETEXT> ("\"Independence Day\""), ("\"The Arrival\""), science fiction")

Please note: In the case where a query or document contains only words defined as stop words in the

collection style.stp file(s), the free text query parser uses the stop words for the query, ignoring the

stop words list.

The FREETEXT operator can be combined with other operators in the same way as the ACCRUE

operator.

5.3.6 > (greater than)

Selects documents whose document fields contain values that are greater than the specified string that

is being searched for. This makes it possible, for example, to search for documents whose date of last

change is after a particular date.

lastChanged > 20101223000000

5.3.7 >= (greater than or equal)

Selects documents whose document fields contain values that are greater than or equal to the

specified string that is being searched for. This makes it possible, for example, to search for documents

whose date of last change is on or after a particular date. Example:

lastChanged >= 20101223000000

5.3.8 < (less than)

Selects documents whose document fields contain values that are less than the specified string that

is being searched for. This makes it possible, for example, to search for documents whose date of last

change is before a particular date.

lastChanged < 20101223000000

5.3.9 <= (less than or equal)

Selects documents whose document fields contain values that are less than or equal to the specified

string that is being searched for. The following example returns documents that were last changed on

or before December 23rd, 2010:

lastChanged <= 20101223000000

Operators and Modifiers

Search Server – © 2011 Infopark AG 51/73

5.3.10 LIKE

This operator is meant to be used in application development environments. It searches for documents

that are similar to the sample one or more documents or text passages you provide. The search engine

analyzes the provided text to find the most important terms to use for the search. If multiple samples

are provided, the search engine assumes that all of the samples are about a single theme and selects

important terms common across the samples. Retrieved documents are relevance-ranked.

The LIKE operator accepts a single operand, called the QBE (query-by-example) specification. The QBE

specification can be either the literal text of the example to query on, or it can be a specification of

one or more full documents and text passages to use as positive and negative examples.

document contains only words defined as stop words in the collections style.stp file(s), a QBE query

with the LIKE operator returns no results.</p>

Syntax

Document specification is made with a series of text references enclosed in braces. The syntax for

specifying references is:

{[name=]type:value [name=]type:value ...}

where:

• name is either posex ("positive example"), or negex ("negative example"). A negative example

reduces the weights of terms when they occur in a positive example. If terms from a negative

example do not exist within the positive example, the negative example has no effect. (Hence

a negex by itself makes no sense.) The variable name is optional. If not specified, name is set

internally to posex. In this case the equal sign must neither be present.

• type can be one of the following:

• VdkVgwKey, to specify a document by its external ID, i. e. the content ID in the Content Manager

or the object ID in the Template Engine.

• Text, to specify the text directly

• value is a reference to a piece of text to use as the positive or negative example. The value of

value depends on type.

• VdkVgwKey: the document ID (i. e. content or object ID)

• Text: Literal text.

If there is no explicit type specifier, value is interpreted in the following ways:

• Literal text if it starts with a quotation mark

• VdkVgwKey for all other cases

The LIKE operator can be combined with other operators using the same rules as for the ACCRUE

operator.

Examples

The following examples illustrate uses of the LIKE operator. Integer numbers always represent a

content or an object ID.

Just literal text:

Operators and Modifiers

Search Server – © 2011 Infopark AG 52/73

<LIKE> ("The dog ate the shoe.")

Explicit specification of a single positive example:

<LIKE> ("{posex=vdkvgwkey:650431}")

Explicit specification of multiple positive and negative examples:

<LIKE> ("{posex=vdkdocid:7369 posex=vdkvgwkey:8457

negex=text:"stock market"}")

Same as the preceding but with implied reference types:

<LIKE> ("{posex=#7369 posex=8457 negex=\"stock market\"}")

Similar to the preceding but with implied posex names:

<LIKE> ("{vdkdocid:7369 vdkvgwkey:8457}")

Same as the preceding, but using the most implicit syntax:

<LIKE> ("{#7369 8457}")

You can combine a text reference list with literal text:

<LIKE> ("{#7369 8457} And more text")

The preceding QBE specification is equivalent to this:

<LIKE> ("{#7369 8457 text: \"And more text\"}")

The simplest way of specifying a single positive example by VgwKey:

<LIKE> ("{650431}")

The example is in the file doc.txt, starting at the 100th byte:

<LIKE> ("{posex=file:doc.txt:100:200}")

Quotation marks embedded in LIKE expressions must be preceded by backslashes. The backslash

indicates to the engine that the following character is supposed to be treated as a literal character.

Efficiency Considerations

In order to process a LIKE expression, the search engine must analyze the full text of the examples in

the QBE specification. This may be time consuming, especially if the example documents are large or

require extensive filtering.

Operators and Modifiers

Search Server – © 2011 Infopark AG 53/73

5.3.11 MATCHES

Selects documents by matching the character string you specify with values stored in a specific

document field. Documents are selected only if the search elements specified match the field value

exactly.

You can use question marks (?) to represent individual variable characters within a string, and asterisks

(*) to match multiple characters within a string.

For example, assume a document field named SOURCE includes the following values:

COMPUTER

COMPUTERWORLD

COMPUTER CURRENTS

PC COMPUTING

To locate documents whose source is COMPUTER, the MATCHES operator is used as follows:

SOURCE <MATCHES> computer

Here, the MATCHES operator matches COMPUTER, but not COMPUTERWORLD, COMPUTER CURRENTS, or

PC COMPUTING.

To locate documents whose source is COMPUTERWORLD, the MATCHES operator is used as follows:

SOURCE <MATCHES> computer?????

Now, the MATCHES operator matches COMPUTERWORLD, since each question mark (?) represents specific

character positions within the string. COMPUTER and COMPUTER CURRENTS are not matched, because

their character strings do not match the length represented by the specific character positions.

To locate documents whose sources are COMPUTER, COMPUTERWORLD, and COMPUTER CURRENTS, the

MATCHES operator is used as follows:

SOURCE <MATCHES> computer*

Here, the MATCHES operator matches COMPUTER, COMPUTERWORLD, and COMPUTER CURRENTS, since

the asterisk (*) represents zero or more variable characters at the end of the string.

To locate documents whose sources include COMPUTER, COMPUTERWORLD, COMPUTER CURRENTS, and

PC COMPUTING, the MATCHES operator can be used as follows:

SOURCE <MATCHES> *comput*

Now, the MATCHES operator matches all four occurrences, since the asterisk (*) represents a character

string of any length.

Operators and Modifiers

Search Server – © 2011 Infopark AG 54/73

5.3.12 != (not equal)

Selects documents whose document fields do not contain the same values as the specified string that is

being searched for. For example, you can search for documents that are not of the document type as

follows:

objType != document

By means of the NOT modifier the same search can be performed using a test for equality:

<#NOT>(objType=document)

Although both queries return the same results, the first query expression is much more efficient than

the second.

5.3.13 PRODUCT

This operator calculates scores for documents matching a query by multiplying the scores for the

query’s individual search elements. The result is then divided by 100.

Following is an example of the search syntax:

<PRODUCT> ("computers","laptops")

If a search on "computers" generated a score of 50 and a search on "laptops" generated a score of 20,

the preceding search would produce a score of 10 (the product of both values, divided by 100).

5.3.14 STARTS

Selects documents by matching the character string you specify with the starting characters of the

values stored in a specific document field. For example, you can search for documents, modified last on

December 23, 2010 by searching for "20101223" in the lastChanged field. Since the values in this field

include the date and the time, the field values must be matched with STARTS:

lastChanged <#STARTS> 20101223

Date values are indexed by the Content Manager and the Template Engine as 14-digit numbers with

the following format: year (4 digits), month, day, hour, minute, second (two digits each).

5.3.15 SUBSTRING

Selects documents by matching the character string you specify with a portion of the strings of the

values stored in a specific document field. The characters that comprise the string can occur at the

beginning of a field value, within a field value, or at the end of a field value.

For example, to retrieve documents whose titles contain words such as "solution", "resolution",

"solve", and "resolve", you can enter the following:

TITLE <SUBSTRING> sol

Operators and Modifiers

Search Server – © 2011 Infopark AG 55/73

5.3.16 SUM

Calculates scores for documents matching a query by adding together, to a maximum of 100, the

scores for the query's search elements. Following is an example query expression:

<SUM> ("computers","laptops")

If a search on "computers" generated a score of 50 and a search on "laptops" generated a score of 20,

the preceding search would produce a score of 70. If a search on "computers" generated a score of 50

and a search on "laptops" generated a score of 75, the preceding search would produce a score of 100

(the maximum).

5.3.17 YESNO

Forces the score of an element to 100, if the element's score is nonzero. Examples help clarify this.

<YesNo> ("Chloe")

If the retrieval result of the search on "Chloe" was 75, with the YesNo operator, the result would be

100; if the retrieval result is 0, it remains 0.

This operator allows you to limit a search to only those documents matching a query, without the score

of that query affecting the final scores of the documents. For example, to search among documents

that contain "Chloe", with "Mead" as the determinant for ranking, you cannot simply specify the

following:

"Chloe" <AND> "Mead"

because that would produce documents ranked with scores combined from both elements. The

following would do what you want:

<YesNo> ("Chloe") <AND> "Mead"

If the retrieval result of the search on "Chloe" was 50 and that on "Mead" was 75, without the YesNo

operator, the combined result would be 50; with the operator, however, it is 75, because the score of

AND is calculated to be the minimum score of all its search elements.

5.4 Modifier Reference

Modifiers are used in conjunction with operators. A modifier changes the standard behavior of an

operator. For example, you can use the CASE modifier with an operator to specify that the case of the

search word you enter be considered a search element as well. Modifiers include CASE, MANY, NOT, and

ORDER.

There are two syntax formats used to specify modifiers with operators. Using the first format, you

specify the modifier name before the operator name, as shown in the table below. Please note that

most of the modifiers can only be used with particular operators.

Operators and Modifiers

Search Server – © 2011 Infopark AG 56/73

Modifier Valid Operators Examples

CASE WORD

WILDCARD

<CASE><WORD> iMac

MANY WORD

WILDCARD

STEM

SOUNDEX

PHRASE

SENTENCE

PARAGRAPH

<MANY><WORD> virtual

NOT all operators cat <AND> dog <AND> <NOT>

pet

ORDER PARAGRAPH

SENTENCE

NEAR/N

ALL

president <ORDER>

<PARAGRAPH> washington

<ORDER> <SENTENCE>

("president",

"washington")

Using the second syntax format, you specify the modifier name with the operator name as follows:

<OpName/ModName>. This second syntax is valid only for the CASE and NOT modifiers.

Modifier Valid Operators Examples

CASE WORD

WILDCARD

CONTAINS

MATCHES

STARTS

ENDS

SUBSTRING

author <CONTAINS/CASE>Don

NOT all operators author<CONTAINS/NOT>don

author<STARTS/NOT>xxx

5.4.1 CASE

Use the CASE modifier with the WORD or WILDCARD operator to perform a case-sensitive search, based

on the case of the word or phrase specified. The modifier only needs to be specified if search words

exclusively containing either uppercase or lowercase letters need to be found in the documents. When

mixed uppercase and lowercase characters are included in a query, the search engine finds case-

sensitive matches automatically.

To use the CASE modifier, you simply enter the search word or phrase as you wish it to appear in

retrieved documents -- in all uppercase letters, in mixed uppercase and lowercase letters, or in all

lowercase letters.

For example, to retrieve documents that contain the word "apple", all in lowercase letters, you can

enter the following:

Operators and Modifiers

Search Server – © 2011 Infopark AG 57/73

<CASE> <WORD> apple

Only those documents that contain the word "apple" will be selected. Occurrences of "Apple",

"apples", or "APPLE" will not be selected.

5.4.2 MANY

Counts the density of words, stemmed variations, or phrases in a document, and produces a relevance-

ranked score for retrieved documents. The more occurrences of a word, stem, or phrase proportional

to the amount of document text, the higher the score of that document when retrieved. Because the

MANY modifier considers density in proportion to document text, a longer document that contains

more occurrences of a word can score lower than a shorter document that contains fewer occurrences.

You can use the MANY modifier with these operators: WORD, WILDCARD, STEM, SOUNDEX, PHRASE,

SENTENCE, PARAGRAPH.

For example, to select documents based on the density of stemmed variations of the word "apple",

you can enter the following:

<MANY> <STEM> apple

To select documents based on the density of the phrase "mission oak", you can enter the following:

<MANY> mission oak

The MANY modifier cannot be used with AND, OR, ACCRUE, or relational operators.

5.4.3 NOT

Use the NOT modifier with a word or phrase to exclude documents that show evidence of that word or

phrase. For example, to select only documents that contain the words "cat" and "mouse" but not the

word "dog", you can enter the following:

cat <AND> mouse <AND> <NOT> dog

5.4.4 ORDER

Use the ORDER modifier to specify that search elements must occur in the same order in which they

were specified in the query. If search values do not occur in the specified order in a document,

the document is not selected. You can use the ORDER modifier with these operators: PARAGRAPH,

SENTENCE, NEAR/N, and ALL.

Always place the ORDER modifier just before the operator. The following syntax examples show

how you can use either simple syntax or explicit syntax to retrieve documents containing the word

"president" followed by the word "washington" in the same paragraph:

Simple syntax:

president <ORDER><PARAGRAPH> washington

Operators and Modifiers

Search Server – © 2011 Infopark AG 58/73

Explicit syntax:

<ORDER><PARAGRAPH> ("president", "washington")

To search for documents containing the words "diver", "kills", "shark" in that order within 20 words

of each other, use one of the following queries:

diver <ORDER><NEAR/20> kills <ORDER> <NEAR/20> shark

<ORDER> <NEAR/20> (diver, kills, shark)

You can use the NEAR/N operator with the ORDER modifier to duplicate the behavior of the PHRASE

operator. For example, to search for documents containing the phrase "world wide web", you can use

the following syntax:

world <ORDER><NEAR/1> wide <ORDER><NEAR/1> web

To search for a word between two other words, you can use the ORDER modifier with the ALL

operator, like this:

<ORDER><ALL>(dog, cat, squirrel)

The above query searches for "cat" between "dog" and "squirrel". Stemmed variations of the words

will match the query.

The between query can be extended to include subquery expressions. For example:

<ORDER><ALL> (dog, fat cat, squirrel)

The above query searches for thephrase "fat cat" between the words "dog" and "squirrel". Again,

stemmed variations of the words are considered a match.

5.5 Ranking the Search Results

The search results of a query to the Autonomy search engine can be sorted by one or more fields.

The most common sorting is by score. The score is a value calculated by the search engine which

expresses the relevance of this search result (hit) in relation to the search query.

The score for a particular document is the result of assigning a score to each search term (the exact

algorithms for this are unknown) and then combining these partial scores. How they are combined

depends on the search operator used:

• AND – minimum of the partial scores.

• OR – maximum of the partial scores.

• YESNO – a positive partial score results in 1, 0 remains 0.

• ANY – like YESNO(OR ...)

• [xx] – multiplies the partial score with 0.xx.

Examples

Operators and Modifiers

Search Server – © 2011 Infopark AG 59/73

Assume the following partial scores for a search result:

• "Teddy" returns 0.4

• "Bär" returns 0.8

• "admins" <IN> permissionLiveServerRead returns 0.77

• "free" <IN> noPermissionLiveServerRead returns 0

Applying the rules for combination mentioned above yields the following results:

• "Teddy" <OR> "Bär" yields max(0.4, 0.8) -> 0.8

• "Teddy" <AND> "Bär" yields min(0.4, 0.8) -> 0.4

• [90]"Teddy" <#OR> [10]"Bär" yields max(0.36, 0.08) -> 0.36

• <#ANY> (("admins" <#IN> permissionLiveServerRead), ("free" <#IN>

noPermissionLiveServerRead)) yields YESNO(max(0.77, 0) -> 1

Further details on calculating scores can be found in the documentation for the individual operators

and modifiers. In particular, see MANY and ACCRUE.

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 60/73

6
6 MISE, the Search Engine Server’s XML Protocol

6.1 Payloads

The XML documents exchanged by CMS components via the XML Interface are called Payloads. The

ses-payload element is the root element of all request and response documents:

<!ELEMENT ses-payload (ses-header, (ses-response+ | ses-request+))>

<!ATTLIST ses-payload

 payload-id CDATA #REQUIRED

 timestamp CDATA #REQUIRED

 version CDATA #REQUIRED

>

The attributes of ses-payload elements have the following meaning:

• payload-id

Payload ID. This ID is generated by the creator of the payload and must be unique within a

communication context. Such a context is formed by the Content Management Server (e.g. of

a company) and all the clients that communicate with the server. As a rule, the payload-id is

generated by an algorithm.

• timestamp

Date and time (timestamp) of payload creation. The timestamp must be specified in canonical form

as a 14-digit string (beginning on the left: year 4-digit, month 2-digit, day 2-digit, hour 2-digit,

minutes 2-digit, seconds 2-digit) in GMT (Example: 20110716020223).

• version

Version of the XML Interface protocol. The structure of the payload depends on the version. At the

time of writing this manual, the XML Interface protocol has the version number 2.1.

In a request a client indicates which version of the XML Interface protocol it is using by specifying a

value for version.

The Search Engine Server supports – in addition to the current version of the protocol – all versions

which were previously valid. If the client is using one of these versions, the server creates a response

payload in this version. Otherwise, it responds with an error message which indicates the protocol

incompatibility. The server creates this message in its current version of the XML Interface protocol.

6.1.1 Header Element

The first subelement of all payloads is ses-header. The ses-header element contains information

about the identity of the two parties that exchange the payload.

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 61/73

<!ELEMENT ses-header (ses-sender, ses-receiver?, ses-authentication?)>

<!ELEMENT ses-sender EMPTY>

<!ATTLIST ses-sender

 sender-id CDATA #REQUIRED

 name CDATA #REQUIRED>

<!ELEMENT ses-receiver EMPTY>

<!ATTLIST ses-receiver

 receiver-id CDATA #REQUIRED

 name CDATA #REQUIRED>

<!ELEMENT ses-authentication EMPTY>

<!ATTLIST ses-authentication

 login CDATA #REQUIRED

 password CDATA #REQUIRED>

ses-sender

The ses-sender element must always appear as the subelement of the ses-header element. It

specifies the identity of the payload sender. The attributes of the ses-sender elements have the

following meaning:

• sender-id

Payload sender ID. During the installation, each CMS server application and the clients are

allocated an ID which is unique within the communication context. This ID is used in the creation of

the payload as the sender-id.

• name

Payload sender name. The name is a string which identifies the application which sends the

payload. The Search Engine Server uses SES as the name.

ses-receiver

The ses-receiver element specifies the identity of the desired receiver of the payload. This element

is optional as long as there is an individual network connection between the server and the client. In

this case, the sender of the payload and the receiver are uniquely identified. If, however, between

the server and the client there is a proxy server which serves several clients or servers, both the server

and the client can use the ses-receiver element to inform the proxy server of the receiver. The

attributes of the ses-receiver elements have the following meaning:

• receiver-id

Payload receiver ID. This attribute has the same semantics as the sender-id attribute of the ses-

sender element. It contains the ID of the NPS server or NPS client which is to receive the payload.

The ID is unique within a communication context. For response payloads, this attribute is always

a copy of the sender-id attribute of the ses-sender element in the corresponding request

payload.

• name

Name of the receiver. The name is a string which identifies the desired receiver application. For

response payloads, this attribute is a copy of the name attribute of the ses-sender element in the

corresponding request payload.

ses-authentication

The ses-authentication element is optional. It can only be used in request payloads. It contains

information about the user for whom the request is to be processed. The attributes of the ses-

authentication element have the following meaning:

• login

The login of the user of the Search Engine Server.

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 62/73

• password

The password of the user (clear text).

6.1.2 Request Element

For request payloads, one or more ses-request elements follow the ses-header element in the

ses-payload root element. These elements specify the operations which are to be executed by the

CMS Server.

<!ELEMENT ses-request (ses-indexDoc|ses-deleteDoc|ses-search)>

<!ATTLIST ses-request

 request-id CDATA #REQUIRED

 preclusive (true | false) "false">

The subelements of the ses-request element are explained in the following sections. An ses-

request element has the following attributes:

• request-id

Request ID. This ID is issued by the creator of the request payload. It must be unique within all

payloads that are exchanged in a particular communication context. It is not sufficient that the ID is

unique within the current payload.

• preclusive

Truth value (true or false). The preclusive attribute allows the NPS client to mark the requests

which are critical for the continued processing of payloads. If the processing of a request marked as

preclusive fails, all further requests in the payload are not processed but are answered with an

error message.

All requests in a payload are processed in sequence beginning with the first request. In this way, it

is possible for a client to put together requests that are dependent on each other in one request

payload. For example, in a single payload, a client can first create an object class and then create

objects based on this class. Using the preclusive attribute, the client can also ensure that the

dependent request is only processed when the previous one has not caused an error.

6.1.3 Response Element

For response payloads, the ses-payload root element contains one or more ses-response elements

after the ses-header element with which each result of the operations performed by the server is

returned.

If a request payload has been completely recognized and processed by the server, each ses-response

element in the response payload corresponds to a ses-request element in the request payload. In

this case, the ses-response elements contain messages which refer to the contents of the requests

(Request Level Message).

If, on the other hand, the Search Engine Server receives an invalid request payload (e.g. without a

ses-header element or with unrecognizable ses-request elements), it returns a response payload

containing only one ses-response element with which the general error is reported (see Payload

Errors). In this case, the ses-response element refers to the payload (Payload Level Message). A ses-

response element is constructed as follows.

<!ELEMENT ses-response (ses-code*)>

<!ATTLIST ses-response

 response-id CDATA #REQUIRED

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 63/73

 payload-id CDATA #IMPLIED

 request-id CDATA #IMPLIED

 success (true | false) #REQUIRED>

The individual responses to the requests are returned in ses-code elements.

<!ELEMENT ses-code ANY>

<!ATTLIST ses-code numeric CDATA #REQUIRED phrase CDATA #REQUIRED>

The attributes of the ses-response element have the following meanings:

• response-id

Response ID. This ID is set by the creator of the response payload. It must be unique within all

payloads that are exchanged in a particular communication context.

• payload-id

Request payload ID. It corresponds to the payload-id attribute of the request payload. This

attribute is added by the server only when the ses-response element contains a payload level

message in the first ses-code element. A client can recognize by the occurrence of this attribute

whether its request payload could be interpreted as such by the server (independently of the

requests contained in it).

• request-id

Request ID. It corresponds to the receiver-id attribute of the ses-request element in the

request payload. This attribute is only present when the ses-code element contains a request level

message.

• success

The value of this attribute is true when the request could be successfully processed. Otherwise, it is

false.

The results of the operations performed are returned by means of ses-code elements within the

ses-response element. The ses-code elements contain a success or error message and other XML

elements which represent the result of the operation or, if necessary, error information.

The attributes of the ses-code element have the following meanings:

• numeric

Error number (or success message number). The messages corresponding to the numbers are

described in section Error Handling.

• phrase

The description of the error.

The content of the ses-code element depends on the operation indicated in the request. In

operations which could not be performed successfully, the content of the ses-code element depends

on the error which occurred. The possible contents of the ses-code element are listed for each

operation in the following sections.

6.2 Indexing Requests

6.2.1 Request

An indexing request is coded using an ses-indexDoc element inside an ses-request. This is shown

in the following example. It also shows that several requests can be placed into one payload:

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 64/73

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

 <ses-payload payload-id="B42TE241" timestamp="20100825172100" version="2.1">

 <ses-header>

 <ses-sender sender-id="FX45RTDT" name="CM-Server"/>

 <ses-authentication login="cm-server" password=""/>

 </ses-header>

 <ses-request request-id="BR12TI5X">

 <ses-indexDoc docId="4712" collection="collection1"

 mimeType="application/ms-word" usesStreaming="YES">

 <title encoding="plain">testdoc1</title>

 <customAttribute encoding="base64">MGHX2c5=</customAttribute>

 <blob encoding="stream">d--1157180779-000000001-X</blob>

 </ses-indexDoc>

 </ses-request>

 <ses-request request-id="BR12TI5Y">

 <ses-indexDoc docId="4713" collection="collection2">

 <title encoding="plain">testdoc2</title>

 ...

 <blob>Just the blob</blob>

 </ses-indexDoc>

 </ses-request></ses-payload>

The ses-indexDoc element has the following attributes:

• docId

The ID of the document to index. Usually this is the content ID (Content Management Server) or

the object ID (Template Engine).

• collection

The name of the collection to which the document to be indexed is to be added.

• mimeType

The MIME type of the document to be indexed. The Search Engine Server uses the MIME type to

determine the preprocessor with which the document is to be preprocessed (see Configuring the

Search Engine Server).

• usesStreaming

YES , if at least one of the attributes to be indexed was transferred to the Search Engine Server via

the Streaming-Interface. Otherwise NO.

The ses-indexDoc element contains as subelements all the attributes listed in section Content

Indexing. Of these attributes only title, the custom attribute customAttribute, and blob were

used in the example above. The encoding of the contents of the object and content attributes to be

indexed is specified using the encoding tag attribute in the attribute tags concerned. encoding can

have one of the following values:

• plain

The value of the attribute to index is not encoded. It is included directly as the value of the

element. This is the default.

• base64

The attribute value is base64-encoded.

• stream

The attribute value is a streaming ticket. The ticket refers to a content that the client has already

transferred to the Search Engine Server using the streaming interface (see the explanation below).

If an attribute is base64-encoded or has been transferred to the Search Engine Server via the streaming

interface, a preprocessor must have been configured for the MIME type of the document. This

preprocessor’s task is to convert the attribute’s content to plain text and to set the value of encoding

to plain.

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 65/73

6.2.2 Streaming

A client has the possibility to send the contents of attributes to the Search Engine Server in advance,

i. e. prior to sending it an indexing request. This procedure is recommendable for large amounts of

binary data because it is faster than base64-encoding the data and including it in the request.

A client uses the so-called streaming interface to transfer such data to the Search Engine Server.

The streaming interface is addressed by sending a POST request to the HTTP port of the Search

Engine Server, specifying /stream as URL. After the data have been transferred, the client receives a

streaming ticket in the response. In the indexing request that follows, the client specifies the ticket ID

in the manner described above in order to refer to the data.

The Content Management Server transferrs the contents of generic documents to the Search Engine

Server via the streaming interface. This also applies to the body of publication, document,

and template objects, if the body is larger than 8 kilobytes. Except for templates, this is also

true for the Template Engine (the Template Engine does not send templates to the Search

Engine Server for indexing). The minimum amount of data to be transferred via streaming can be

configured in the system configuration of the Content Manager and the Template Engine using the

minStreamingDataLength entry.

6.2.3 Response

The Search Engine Server uses an empty ses-code element in its response to indicate that an indexing

request was processed successfully. The attributes of this element are described in section Response

Element. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="d--1950259307-000000002-X" timestamp="20101017150013"

 version="2.1">

 <ses-header>

 <ses-sender sender-id="SES-Infopark-DEV-0" name="SES"/>

 <ses-receiver name="CM Server" receiver-id="CM-Infopark-DEV-0"/>

 </ses-header>

 <ses-response response-id="0"

 request-id="d--1949717044-000000002-X" success="true">

 <ses-code phrase="OK" numeric="200"/>

 </ses-response>

</ses-payload>

6.3 Search Requests

6.3.1 Request

Search requests are formed using the ses-search element in an ses-request element. Example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="B42TE241" timestamp="20100825172100" ses.version="2.0">

 <ses-header>

 <ses-sender sender-id="FX45RTDT" name="CM-Server"/>

 <ses-authentication login="cm-server" password=""/>

 </ses-header>

 <ses-request request-id="BR12TI5X">

 <ses-search>

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 66/73

 <query parser="simple">www <#AND> business</query>

 <minRelevance>50</minRelevance>

 <maxDocs>200</maxDocs>

 <offset>

 <start>61</start>

 <length>20</length>

 </offset>

 <searchBase>

 <query parser="simple">title <#CONTAINS> business</query>

 <collection>collection1</collection>

 <collection>collection2</collection>

 </searchBase>

 <sortOrder>

 <sortField direction="desc">field23</sortField>

 ...

 </sortOrder>

 <resultRecord>

 <resultField format="ISO" timezone="MEZ"

 formatter="formatterAliasName">field1</resultField>

 ...

 </resultRecord>

 <searchDirection start="newest" />

 </ses-search>

 </ses-request>

</ses-payload>

In the following, the subelements of the ses-search element are described. If left out in the request,

the defaults specified here, such as 500 for maxDocs (the maximum number of documents in the

search result), are filled in by the Search Engine Server, before the request is passed to the search

engine module. This is only the case if the Verity search engine module is used. The preprocessor,

however, always receives the original request document to which no default values have been added.

• query

This element is optional. It has the optional parser attribute whose value can be simple (the

default), explicit, or freetext. If the element is not specified, all indexed documents of the

specified collection are returned. The content of the element is the search query, stated in the

search processor’s syntax.

• minRelevance

This optional element is used to specify the minimum relevance of the documents to be included

in the search result. Valid values are integer numbers in the range from 0 to 100 (inclusive), with 0

indicating the least and 100 the most relevant documents. The default value is 0.

• maxDocs

This element is optional. Its content specifies the maximum number of documents to be included

in the results list. Valid values are positive integer numbers and the character string unlimited.

unlimited means that as many hits are to be included in the results list as the platform supports.

• offset

This optional element allows you to define the subset of the search result to be returned.

Subelements:

• start

The content of this element specifies the index of the first document to be returned. The index of

the first document in the search result is 1. Default: 1.

• length

specifies the number of documents to return, starting with the document whose index is defined

by start . Default: 20. If offset specifies a partly or completely nonexistent subset of the search

result, no documents, or only those documents present in the range, respectively, are returned. In

these cases, no error message is generated.

• searchBase

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 67/73

This optional element restricts the documents to search by a search query or a list of collections. If

the element is not present, all indexed documents in all collections are searched. Subelements:

• query

This element is optional. It specifies a search which is performed before the query given in

the query element below ses-search is executed. If the element is not present, all indexed

documents in the specified collections are searched. The element has the optional parser

attribute, whose value can be simple (the default), explicit, or freetext. The content of the

element is the search query stated in the search processor’s syntax.

• collection

This element is optional and can be specified more than once. Its content is the name of a

collection whose documents are to be searched. If the element has not been specified, all the

documents of all collections are searched.

• sortOrder

This optional element can be used to determine the criteria by which the documents in the search

result are sorted. By default, the documents are sorted by score, i. e. by relevance. The element

must have at least one and can have up to 16 sortField subelements:

• sortField

Each sortField element determines the name of a document field to be used as sorting

criterion, taking into account the order of the elements. The first sortField element defines

the primary sorting criterion, the second element the second criterion and so forth. Of each field

value only the first 64 characters are taken into account. All available fields plus score can be

specified as sorting criterion. sortField has the optional direction attribute which specifes

the sort order. Valid values are asc (ascending, the default) and desc (descending).

• resultRecord

This element is optional. Its subelements specify the fields to be returned for each document in the

search result. By default the fields id, title, and score are returned. Subelements:

• resultField

The contents of a resultField element specifies the name of the field to be returned for each

document. The content of resultRecord may contain several resultField elements. All

available fields as well as id and score can be specified. If a nonexistent field is specified, then

the empty value is returned as its value. The element has the three attributes format, timezone

and formatter:

The value of format is the name of a date format used to format the field values concerned,

provided they are date values. The format names and its formats are stored in the

validDateTimeOutputFormats system configuration entry (see Executing the Search Engine

Server). By default, the first format specified there is used.

The timezone attribute can be used to specify the timezone into which date specifications are to

be converted. By default the timezone of the server on which the Search Engine Server is running

is used.

Using the formatter attribute the values of the document fields returned can be formatted

independently of their type. The value of the attribute is the alias name of a Tcl procedure. To

this alias the true Tcl procedure name must have been assigned in the tclFormatterCommands

system configuration entry (see Executing the Search Engine Server).

• searchDirection

This optional element defines the order in which the documents in the specified collections are

searched. This order is determined with the start attribute. Its value can be newest (the default)

or oldest. newest causes the search to start with the most recent documents. Otherwise it starts

with the oldest documents. The element does not have any content.

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 68/73

6.3.2 Response

The response to a search request is coded in the searchResults element in the response payload.

This element is located below the ses-code element. It contains the requested subset of the search

result. This subset is determined by the offset element contained in the request. Example:

<?xml version="1.0"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="d--1950259307-000000004-X" timestamp="20101017150655"

 version="2.1">

 <ses-header>

 <ses-sender sender-id="SES-Infopark-DEV-0" name="SES"/>

 <ses-receiver name="CM Server" receiver-id="CM-Infopark-DEV-0"/>

 </ses-header>

 <ses-response response-id="0"

 request-id="d--1949717044-000000006-X" success="true">

 <ses-code phrase="OK" numeric="200">

 <searchResults hits="567" searched="2045381">

 <record index="21" offsetIndex="1">

 <title>A sample Document</title>

 <score>77</score>

 <docId>546381</docId>

 </record>

 ...

 </searchResults>

 </ses-code>

 </ses-response>

</ses-payload>

The searchResults element has the two attributes hits and searched. The value of hits specifies

the total number of hits contained in the search result. The value of searched specifies the total

number of documents that were searched. The content of searchResults is a list of record

elements:

• record

Each hit is represented by a record element. The element has the two attributes index and

offsetIndex. The value of index is the index of the document in the complete search result, while

offsetIndex is the index of the document in the requested subset of the search result. For both

values the smallest value is 1.

The content of the element is a list of elements each of which is the name of a document field (see

Content Indexing). For each of the elements a corresponding resultField element was present in

the search query.

The content of a document field element is the value of the document field after formatting.

Formatting can be achieved by means of the format, timezone, and formatter attributes in the

corresponding resultField elements included in the search request.

6.4 Document Deletion Requests

6.4.1 Request

Document deletion requests are formed using the ses-deleteDoc element in a ses-request

element, in accordance with the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="B42TE241" timestamp="20100825172100" version="2.1">

 <ses-header>

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 69/73

 <ses-sender sender-id="FX45RTDT" name="CM-Server"/>

 <ses-authentication login="cm-server" password=""/>

 </ses-header>

 <ses-request request-id="BR12TI5X">

 <ses-deleteDoc docId="4711" collection="collection1"/>

 </ses-request>

</ses-payload>

The ses-deleteDoc element has the following attributes:

• docId

The ID of the document to be deleted. Normally this is the content ID (Content Management

Server) or the object ID (Template Engine).

• collection

The name of the collection from which the document is to be deleted.

6.4.2 Response

The Search Engine Server responds to a deletion request with an empty ses-code element which has

the attributes described in section Response Element. Example:

<?xml version="1.0"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="d--1950259307-000000003-X" timestamp="20101017150617"

 version="2.1">

 <ses-header>

 <ses-sender sender-id="SES-Infopark-DEV-0" name="SES"/>

 <ses-receiver name="CM Server" receiver-id="CM-Infopark-DEV-0"/>

 </ses-header>

 <ses-response response-id="0" request-id="d--1949717044-000000004-X" success="true">

 <ses-code phrase="OK" numeric="200"/>

 </ses-response>

</ses-payload>

6.5 Collection Deletion Requests

6.5.1 Request

All the documents indexed in a collection can be deleted by means of a collection deletion request.

Such a request does not remove the collection itself, only the data in it is deleted. The collection’s

configuration is preserved in this process.

Collection deletion requests are formed by means of a ses-purgeCollection element contained in a

ses-request element in accordance with the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="B42TE241" timestamp="20100825172100" ses.version="2.0">

 <ses-header>

 <ses-sender sender-id="FX45RTDT" name="CM-Server"/>

 <ses-authentication login="cm-server" password=""/>

 </ses-header>

 <ses-request request-id="BR12TI5X">

 <ses-purgeCollection>collection1</ses-purgeCollection>

 </ses-request>

</ses-payload>

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 70/73

The ses-purgeCollection element does not have any attributes.

6.5.2 Response

The Search Engine Server responds to a deletion request with an empty ses-code element which has

the attributes described in section Response Element. Example:

<?xml version="1.0"?>

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="d--1950259307-000000003-X" timestamp="20101017150617"

 version="2.1">

 <ses-header>

 <ses-sender sender-id="SES-Infopark-DEV-0" name="SES"/>

 <ses-receiver name="CM Server" receiver-id="CM-Infopark-DEV-0"/>

 </ses-header>

 <ses-response response-id="0" request-id="d--1949717044-000000004-X" success="true">

 <ses-code phrase="OK" numeric="200"/>

 </ses-response>

</ses-payload>

6.6 Error Handling

In this section the errors are listed that can appear in ses-code elements contained in response

payloads. Only protocol errors are mentioned here, and not the errors that can occur when the Search

Engine Server performs an operation.

With protocol errors a distinction is made between errors on the payload level and on the request

level.

6.6.1 Payload Errors

A payload error is generated if a request payload is illformed. If such an error occurs, all the requests

contained in the payload are ignored. In the case of an error, the Search Engine Server returns a

response payload containing a single ses-response element. Instead of the request-id attribute

the opening tag of this element contains a payload-id attribute whose value is the ID of the invalid

payload.

The ses-response element contains an ses-code element in whose opening tag the attributes

numeric and phrase are set to the error number and the message text, respectively. The following

example shows a response payload containing an error message.

<?xml version="1.0" encoding="UTF-8">

<!DOCTYPE ses-payload SYSTEM "http://www.infopark.com/ses.dtd">

<ses-payload payload-id="B3BWPOIU" timestamp="20100906100205" version="2.1">

 <ses-header>

 <ses-sender sender-id="U2JWUE09" name="SES"/>

 </ses-header>

 <ses-response response-id="BR12TI5X"

 payload-id="AHZ97I28" success="false">

 <ses-code numeric="1"

 phrase="Payload incomplete / cannot parse">

 </ses-code>

 </ses-response>

</ses-payload>

http://www.infopark.com/1212034/10-Errors

MISE, the Search Engine Server’s XML Protocol

Search Server – © 2011 Infopark AG 71/73

On the payload level the following errors can occur:

• Payload incomplete / Cannot Parse

This is the error response to request payloads containing invalid XML code.

• Not well-formed Payload Request payloads that contain valid XML code but do not represent a

valid request payload are answered with this message.

• Incompatible Version

This error is returned for request payloads formulated in a version of the XML interface protocol

not supported by the server. The behaviour of the server in such cases is described in section

Payloads.

• Authentication Failed

The information in the ses-authentication element is invalid.

6.6.2 Request Errors

Request errors refer to a single request only. Each request error is returned in the corresponding

response in the response payload.

On the request level the following errors can occur:

• Not well-formed request

The XML fragment contained in the ses-request element does not represent a valid request.

• Execution precluded

The request has not been processed because a previous request that was marked as preclusive

has failed.

MISE as DTD

Search Server – © 2011 Infopark AG 72/73

7
7 MISE as DTD

This section contains the definition of MISE as DTD. It is subject to alterations.

7.1 Request

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT ses-request

 (ses-indexDoc|ses-deleteDoc|ses-search|ses-purgeCollection|

 ses-optimizeCollections|ses-flushQueue|ses-holdQueue|

 ses-resumeQueue)>

<!ATTLIST ses-request

 request-id CDATA #REQUIRED

 preclusive (true | false) "false"

>

<!ELEMENT ses-indexDoc ANY>

<!ATTLIST ses-indexDoc

 docId CDATA #REQUIRED

 collection CDATA #REQUIRED

 usesStreaming ("YES" | "NO") #DEFAULT "NO"

 mimeType CDATA #REQUIRED

>

<!-- The following element is an example for an attribute element

 contained in the ses-indexDoc element-->

<!ELEMENT blob (#PCDATA)>

<!ATTLIST blob

 encoding (base64|plain|stream) #DEFAULT plain

>

<!ELEMENT ses-deleteDoc EMPTY>

<!ATTLIST ses-deleteDoc

 docId CDATA #REQUIRED

 collection CDATA #REQUIRED

>

<!ELEMENT ses-search

 (query?,

 minRelevance?,

 maxDocs?,

 offset?,

 searchBase?,

 sortOrder?,

 resultRecord?,

 searchDirection?) >

<!ELEMENT query (#PCDATA)

<!ATTLIST parser (simple|explicit|freetext) #DEFAULT simple>

<!ELEMENT minRelevance (#PCDATA)>

<!ELEMENT maxDocs (#PCDATA)>

<!ELEMENT offset (start,length)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT searchBase (collection+,query?>

<!ELEMENT collection (#PCDATA)>

<!ELEMENT sortOrder (sortField+)>

<!ELEMENT sortField (#PCDATA)>

MISE as DTD

Search Server – © 2011 Infopark AG 73/73

<!ATTLIST sortField direction (asc,desc) #DEFAULT asc>

<!ELEMENT resultRecord (resultField+)>

<!ELEMENT resultField (#PCDATA)>

<!ATTLIST resultField

 format (#CDATA) #IMPLIED

 timezone (#CDATA) #IMPLIED

 formatter (#CDATA) #IMPLIED

>

<!ELEMENT searchDirection EMPTY>

<!ATTLIST searchDirection start (newest|oldest) #DEFAULT newest

>

<!ELEMENT ses-optimizeCollections EMPTY>

<!ELEMENT ses-purgeCollection (#PCDATA)>

<!ELEMENT ses-flushQueue EMPTY>

<!ELEMENT ses-holdQueue EMPTY>

<!ELEMENT ses-resumeQueue EMPTY>

7.2 Response (ses-search)

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT ses-response (ses-code*)>

<!ATTLIST ses-response

 response-id CDATA #REQUIRED

 payload-id CDATA #IMPLIED

 request-id CDATA #IMPLIED

 successful (true | false) #REQUIRED

>

<!ELEMENT ses-code ANY>

<!ATTLIST ses-code

 numeric CDATA #REQUIRED

 phrase CDATA #REQUIRED

>

<!ELEMENT searchResults (record*)>

<!ATTLIST searchResults

 hits CDATA #REQUIRED

 searched CDATA #REQUIRED

>

<!ELEMENT record ANY>

<!ATTLIST record

 index CDATA #REQUIRED

 offsetIndex CDATA #REQUIRED

>

<!ELEMENT title ANY>

<!ATTLIST field

 type CDATA #REQUIRED

>

	Search Server
	Contents

	Introductory Comments
	Concepts of Infopark Search Cartridge
	Configuration and Administration
	The Syntax of the Search Queries
	Operators and Modifiers
	MISE, the Search Engine Server’s XML Protocol
	MISE as DTD
	Request
	Response (ses-search)

